In 2006, Bao et al proposed an identlty-based threshold proxy signature scheme with known signers. In this paper, we show that Bao et al's scheme is vulnerable to the forgery attack. An adversary can forge a valid threshold proxy signature for any message with knowing a previously valid threshold proxy signature. In addition, their scheme also suffers from the weakness that the proxy signers might change the threshold value. That is, the proxy signers can arbitrarily modify the threshold strategy without being detected by the original signer or verifiers, which might violate the original signer's intent. Furthermore, we propose an improved scheme that remedies the weaknesses of Bao et al's scheme. The improved scheme satisfies all secure requirements for threshold proxy signature.
To resist the side chaimel attacks of elliptic curve cryptography, a new fast and secure point multiplication algorithm is proposed. The algorithm is based on a particular kind of addition chains involving only additions, providing a natural protection against side channel attacks. Moreover, the new addition formulae that take into account the specific structure of those chains making point multiplication very efficient are proposed. The point multiplication algorithm only needs 1 719 multiplications for the SAC260 of 160-bit integers. For chains of length from 280 to 260, the proposed method outperforms all the previous methods with a gain of 26% to 31% over double-and add, 16% to22% over NAF, 7% to 13% over4-NAF and 1% to 8% over the present best algorithm--double-base chain.
This paper proposed a distributed key management approach by using the recently developed concepts of certificate-based cryptosystem and threshold secret sharing schemes. Without any assumption of prefixed trust relationship between nodes, the ad hoc network works in a self-organizing way to provide the key generation and key management services using threshold secret sharing schemes, which effectively solves the problem of single point of failure. The proposed approach combines the best aspects of identity-based key management approaches (implicit certification) and traditional public key infrastructure approaches (no key escrow).