The elastic-plastic stress distribution and the elastic-plastic boundary con- figuration near a crack surface region are significant but hard to obtain by means of the conventional analysis. A crack line analysis method is developed in this paper by consid- ering the crack surface as an extension of the crack line. The stresses in the plastic zone, the length, and the unit normal vector of the elastic-plastic boundary near a crack surface region are obtained for an antiplane crack in an elastic-perfectly plastic solid. The usual small scale yielding assumptions are not needed in the analysis.
Crack line analysis is an effective way to solve elastic-plastic crack problems. Application of the method does not need the traditional small-scale yielding conditions and can obtain sufficiently accurate solutions near the crack line. To address mode- Ⅲ crack problems under the perfect elastic-plastic condition, matching procedures of the crack line analysis method axe summarized and refined to give general forms and formulation steps of plastic field, elastic-plastic boundary, and elastic-plastic matching equations near the crack line. The research unifies mode-III crack problems under different conditions into a problem of determining four integral constants with four matching equations. An example is given to verify correctness, conciseness, and generality of the procedure.