This paper reports that a series of silver oxide (AgzO) films are deposited on glass substrates by direct-current reactive magnetron sputtering at a substrate temperature of 250 ℃ and an oxygen flux ratio of 15:18 by modifying the sputtering power (SP). The AgxO films deposited apparently show a structural evolution from cubic biphased (AgO + Ag20) to cubic single-phased (Ag20), and to biphased (Ag20 + AgO) structure. Notably, the cubic single-phased Ag20 fihn is deposited at the SP = 105 W and an AgO phase with (220) orientation discerned in the Ag^O films deposited using the SP 〉 105 W. The transmissivity and refiectivity of the AgxO films in transparent region decrease with the increase the SP, whereas the absorptivity inversely increases with the increase of the SP. These results may be due to the structural evolution and the increasing film thickness. A redshift of the films' absorption edges determined in terms of Tauc formula clearly occurs from 3.1 eV to 2.73 eV with the increase of the SP.
Using a radio-frequency reactive magnetron sputtering technique, a series of the single-phased Ag20 films are deposited in a mixture of oxygen and argon gas with a flow ratio of 2:3 by changing substrate temperature (Ts). Effects of the Ts on the microstructure and optical properties of the films are investigated by using X-ray diffractometry, scanning electron microscopy and spectrophotometry. The single-phased Ag20 films deposited at values of Ts below 200℃ are (111) preferentially oriented, which may be due to the smallest free energy of the (111) crystalline face. The film crystallization becomes poor as the value of Ts increases from 100℃ to 225℃. In particular, the Ag20 film deposited at Ts=225℃ loses the (111) preferential orientation. Correspondingly, the film surface morphology obviously evolves from a uniform and compact surface structure to a loose and gullied surface structure. With the increase of Ts value, the transmissivity and the reflectivity of the films in the transparent region are gradually reduced, while the absorptivity gradually increases, which may be attributed to an evolution of the crystalline structure and the surface morphology of the films.