(S)-4-Phenyl-2-oxazolidinone imprinted polymers were prepared by using methacrylic acid (MAA) as the functional monomer, and divinylbenzene (DVB) as crosslinker. The factors, which influence the selectivity of the polymers were explored. Effective separation was observed for racemic 4-phenyl-2-oxazolidinone in mobile phase of acetonitrile. The investigation of mobile phase suggested that the hydrogen bonds between template and functional monomer was a primary factor in chiral recognition, while the preparation of polymers implied that the л-л stacking interaction between template and crosslinker played a role in imprinting procedure.
A molecularly imprinted polymer was synthesized using 2-(diethylamino)ethylmethacry -late(DEM) and bismethacryloyl-β-cyclodextrin(BMA-β-CD) as bi-functional monomers and norfloxacin(NOF) as a template. The results of equilibrium binding experiments indicated that the polymer has affinity and specificity for NOF in aqueous media, and that its selective recognition ability for the template was higher than that of the imprinted polymers synthesized with a single functional monomer (BMA-β-CD or DEM).