The effect and mechanism of carmustine(BCNU) combined with all-trans retinoic acid(ATRA) on the apoptosis of human glioblastoma U251 cells were investigated by means of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphe- nyltetrazolium bromide(MTT) assay, flow cytometry, reverse transcription-polymerase chain reaction(RT-PCR) and Western blot analysis. The results show that BCNU or ATRA shows time- and dose-dependent inhibition effects on human glioblastoma U251 cells and the combination of BCNU with ATRA shows an synergistic inhibition effect on human glioblastoma U251 cells, and the combined BCNU and ATRA can significantly inhibit the proliferation of human glioblastoma U251 cells, and induce the apoptosis of them, making the cells arrest in the stage of G1 phase, the stage of S and G2 phases decline, the rate of the apoptosis of human glioblastoma U251 cells increase, the corresponding mRNA expression of cyclin E and cyclin-dependent kinase 2(CDK2) downregulated and the correspon- ding mRNA expression of p27kip 1 unregulated. In addition, the combined BCNU and ATRA reduced the protein expression of nuclear factor kappa B(NF-κB). Taken together, these results suggest that the treatment of human glioblastoma U251 cells with a combination application of ATRA and BCNU can exert synergistic effect, the course of this kind of combination chemotherapy may likely be associated with multiple molecular mechanisms for apoptosis, furthermore, the cyclin E and p27kip 1 should be considered as novel targets for controlling the growth of glioblastoma cells.