The reentry trajectory optimization for hypersonic vehicle(HV)is a current problem of great interest.Some complex constraints,such as waypoints for reconnaissance and no-fly zones for threat avoidance,are inevitably involved in a global strike mission.Of the many direct methods,Gauss pseudospectral method(GPM)has been demonstrated as an effective tool to solve the trajectory optimization problem with typical constraints.However,a series of diffculties arises for complex constraints,such as the uncertainty of passage time for waypoints and the inaccuracy of approximate trajectory near no-fly zones.The research herein proposes a multi-phase technique based on the GPM to generate an optimal reentry trajectory for HV satisfying waypoint and nofly zone constraints.Three kinds of specifc breaks are introduced to divide the full trajectory into multiple phases.The continuity conditions are presented to ensure a smooth connection between each pair of phases.Numerical examples for reentry trajectory optimization in free-space flight and with complex constraints are used to demonstrate the proposed technique.Simulation results show the feasible application of multi-phase technique in reentry trajectory optimization with waypoint and no-fly zone constraints.
Since the issues of low communication bandwidth supply and limited battery capacity are very crucial for wireless sensor networks, this paper focuses on the problem of event- triggered cooperative target tracking based on set-membership information filtering. We study some fundamental properties of the set-membership information filter with multiple sensor measurements. First, a sufficient condition is derived for the set-membership information filter, under which the boundedness of the outer ellipsoidal approximation set of the estimation means is guaranteed. Second, the equivalence property between the parallel and sequential versions of the setmembership information filter is presented. Finally, the results are applied to a 1D eventtriggered target tracking scenario in which the negative information is exploited in the sense that the measurements that do not satisfy the triggering conditions are modelled as set-membership measurements. The tracking performance of the proposed method is validated with extensive Monte Carlo simulations.