In machining the particle reinforced aluminum based composite material with high Si content using the cobalt-cemented tungsten carbide micro cutting tools, diamond like carbon (DLC) films are deposited on cobalt-cemented tungsten carbide micro-drills with two-step pretreatment method. Characteristics of DLC coated tools are investigated in bias-enhanced HFCVD system with the optimized hot filament arrangement. The optimization deposition technology is obtained and the wear mechanism of cutting tools is analyzed. The drilling performance of DLC coated tools is verified by the experiments of cutting particle reinforced aluminum based composite material (Si 15% in volume) compared with uncoated ones. Experimental results show that the two-step pretreatment method is appropriate for complex shaped cemented carbide substrates and ensures the good adhesive strength between the diamond film and the substrate. The cutting performance of DLC coated tool is enhanced 10 times when machining the Si particle reinforced aluminum based metal matrix composite compared with that of uncoated ones under the same cutting conditions.
Two new AlTiN coated cemented carbide drills with Al content of 40% and 55% in weight are developed for high efficiency dry drilling of 40Cr. By studying tool durability, machined hole quality, tool wear mechanism, chip deformation, and lubrication, the dry drilling performance of the two kinds of coated drills is analyzed. Experimental results show that the AlTiN coated drills are suitable for high efficiency dry drilling and can obtain higher quality of machined holes. The tool durability of the drill with 55% Al content is 1. 3 times of that of the drill with 40% Al content at the cutting speed of 90 m/min. The wear mechanism of two AlTiN coatings are studied in experiments. During dry drilling process, oxidative wear appears in both two kinds of drills. The oxide film is formed on the top of the coated drill containing Al content of 55%. And the oxide film helps to increase its high temperature resistance and decrease the coating flaking, thus the drill is failed because of coating subsidence. The drill with less Al content is failed due to peeling and breakage. The lubricated condition in dry drilling is improved by the high Al content coating. It helps to reduce the cutting deformation and benefits to improve the quality of machined holes. The AlTiN coating with higher Al content shows longer tool life and higher quality of machined holes in high efficiency dry drilling. Its tool life increases by 30% compared with that of the coating with less Al content.