An overview of the major techniques to generate and detect THz radiation so far,especially the major approaches to generate and detect coherent ultra-short THz pulses using ultra-short pulsed laser,has been presented.And also,this paper,in particularly,focuses on broadband THz spectroscopy and addresses on a number of issues relevant to generation and detection of broadband pulsed THz radiation as well as broadband time-domain THz spectroscopy (THz-TDS) with the help of ultra-short pulsed laser.The time-domain waveforms of coherent ultra-short THz pulses from photoconductive antenna excited by femtosecond laser with different pulse durations and their corresponding Fourier-transformed spectra have been obtained via the numerical simulation of ultrafast dynamics between femtosecond laser pulse and photoconductive material.The origins of fringes modulated on the top of broadband amplitude spectrum,which is measured by electric-optic detector based on thin nonlinear crystal and extracted by fast Fourier transformation,have been analyzed and the major solutions to get rid of these fringes are discussed.
We experimentally investigate an optimum scheme of coupling a collimated light from a Ti:sapphire laser source into a standard single-mode fiber (SMF). By adjusting the effective numerical aperture (NA) of coupling lens and eliminating the chromatic aberration, a coupling efficiency of around 70% is finally obtained. This result is close to the maximum value predicted by theoretical simulation. It is well demonstrated that high coupling efficiency between Ti:sapphire laser and SMF can also be obtained by optimizing certain parameters of a coupling lens, without employing any special optical components, or the specific fiber with complex structure.
The excitonic optical absorption of GaAs bulk semiconductors under intense terahertz (THz) radiation is investigated numerically. The method of solving initial-value problems, combined with the perfect matched layer technique, is used to calculate the optical susceptibility. In the presence of a driving THz field, in addition to the usual exciton peaks, 2p replica of the dark 2p exciton and even-THz-photon-sidebands of the main exciton resonance emerge in the continuum above the band edge and below the main exciton resonance. Moreover, to understand the shift of the position of the main exciton peak under intense THz radiation, it is necessary to take into consideration both the dynamical Franz-Keldysh effect and ac Stark effect simultaneously. For moderate frequency fields, the main exciton peak decreases and broadens due to the field-induced ionization of the excitons with THz field increasing. However, for high frequency THz fields, the characteristics of the exciton recur even under very strong THz fields, which accords with the recent experimental results qualitatively.