A series of Pt catalysts supported on the Hβ-zeolite that is ion-exchanged with the rare earth metal ions of Ce(III) and La(III),are prepared by impregnation,characterized by inductively coupled plasma (ICP),X-ray diffraction (XRD),BET,temperature-programmed desorption of ammonia (NH3-TPD),temperature-programmed reduction of hydrogen (H2-TPR) and H2-chemisorption techniques,and evaluated in the hydroisomerization of n-heptane with an atmospheric fixed-bed reactor.The reaction temperature,time on stream,space velocity,and the ratio of H2/n-heptane are changed to get the optimal conditions.The Ce(III) and La(III)-exchanged Hβ-zeolites exhibit higher selectivity for isomerized products than the neat Hβ-zeolite.Moreover,the Ce(III)-exchanged catalysts give higher conversions of n-heptane,whereas the La(III)-exchanged ones do not show any improvement in con-version.Under optimal conditions,the catalyst with 0.4% (by mass) Pt and 0.5% (by mass) Ce loading presents very high selectivity of isomerized products of 95.1% coupled with high n-heptane conversion of 68.7%.Effects of the ion-exchange of Ce(III) and La(III) on the catalytic performance are discussed in relation with the physico-chemical properties of catalysts.
Shape-selective catalysts for the disproportionation of toluene were prepared by the modification of the cylinder-shaped ZSM-5 zeolite extrudates with chemical liquid deposition with TEOS (tetraethyl orthosilicate).Various parameters for preparing catalysts were changed to investigate the suitable conditions.The resulting cata-lysts were tested in a pressured fixed bed reactor and characterized by SEM (scanning electron microscopy).The conversion of toluene and para-xylene selectivity were influenced remarkably by the n(SiO2)/n(Al2O3) ratio of ZSM-5 zeolite,the type and amount of deposition agent,acid and solvent used,and the time and cycle of deposition treatment.TEOS was proved to be a more efficient agent than the conventional polysiloxanes when the deposition amount was low.The catalyst prepared at the suitable conditions exhibited a high para-xylene selectivity of 91.1% with considerable high conversion of 25.6%.SEM analyses confirmed the formation of a layer of amorphous silica on the external surface of ZSM-5 zeolie crystals,which was responsible for the highly enhanced shape-selectivity.
Small crystal zeolites ZSM-5 with sizes of 150-300 nm were synthesized using the colloidal silicate precursors as the silica source created by the acid-catalyzed hydrolysis of tetraethylorthosilicate with tetrapropylammonium bromide as the structure-directing agent within a short crystallization time of 20-35 h. The precursors and final products were detected by XRD, SEM, ICP and DLS.