The phosphorus-doped single wall carbon nanotube(PSWCNT) is studied by using First-Principle methods based on Density Function Theory(DFT).The formation energy,total energy,band structure,geometry structure and density of states are calculated.It is found that the formation energy of the P-doped single carbon nanotubes increases with diameters;the total energy of carbon nanotubes with the same diameter decreases as the doping rate increases.The effects of impurity position on the impurity level are discussed.It illustrates that the position of the impurity level may depend on the C-P-C bond angle.According to the above results,it is feasible to substitute a carbon atom with a phosphorus atom in SWCNT.It is also found that P-doped carbon nanotubes are N type semiconductor.
In order to better understand the bonding mechanisms of the phosphorus-doped diamond films and the influences of the phosphorus-doped concentration on the diamond lattice integrity and conductivity,we calculate the electronic structures of the phosphorus-doped diamond with different phosphorus concentrations and the density of states in the phosphorus--doped diamond films with a vacant lattice site by the first principle method.The calculation results show the phosphorus atom only affects the bonds of a few atoms in its vicinity,and the conductivity increases as the doped concentration increases.Also in the diamond lattice with a total number of 64 atoms and introducing a vacancy into the non-nearest neighbor lattice site of a phosphorus atom,we have found that both the injuries of the phosphorus-doped diamond films and the N-type electron conductivity of diamond films could be improved.
We present a system study on the electronic structure and optical property of boron doped semiconducting graphene nanoribbons using the density functional theory. Energy band structure, density of states, deformation density, Mulliken popular and optical spectra are considered to show the special electronic structure of boron doped semiconducting graphene nanoribbons. The C-B bond form is discussed in detail. From our analysis it is concluded that the Fermi energy of boron doped semiconducting graphene nanoribbons gets lower than that of intrinsic semiconducting graphene nanoribbons. Our results also show that the boron doped semiconducting graphene nanoribbons behave as p-type semiconducting and that the absorption coefficient of boron doped armchair graphene nanoribbons is generally enhanced between 2.0 eV and 3.3 eV. Therefore, our results have a great significance in developing nano-material for fabricating the nano-photovoltaic devices.