The structural defects of L10 FePt are investigated by the molecular dynamics (MD) with a modified analytic embedded-atom method (MAEAM). The L10 ordered structure of FePt is relaxed from a trial fcc structure. The defect formation energies are calculated. The vacancy formation energies of Fe and Pt are 1.89 eV and 2.11 eV respectively. The antisite formation energy of Fe in Pt sublattice is 0.35 eV. The antisite formation energy of Pt in Fe sublattice is 0.09 eV. The tendency of the vacancy formation energy is in agreement with other calculation. The point defect structure types are Pt antisite in rich-Pt side and Fe antisite in rich-Fe side.
The electronic structures of the titanium dioxide(TiO2) doped with V and Fe were analyzed by using first-principle calculations based on the density functional theory(DFT) with the full potential linearized augmented plane wave method (FP-LAPW). The fully optimized structure and the relaxation introduced by impurity were obtained by minimizing the total energy and atomic forces. The unit cell of the V-doped anatase TiO2 is smaller than that of the non-doped one, but for the Fe-doped one, the case is just the opposite. It is found that the apical Ti-O and impurity-O bond lengths of the V/Fe-doped anatase TiO2 are greater than those of the non-doped structure, but smaller for the equatorial bond length. Through the band structures and the density of states, the V-doped TiO2 is shown to be a kind of half-metal, while the Fe-doped TiO2 a kind of metal. The magnetic moments of the V/Fe-doped system are mainly generated by the dopants. The results may be helpful for us to understand the experimental outcome of this system.