The linear mode conversion of electromagnetic waves in the hot, unmagnetized inhomogeneous plasma is studied numerically for different density profiles, and the dependence of the absorption coefficient on the incident angles and the wave frequencies are obtained for different electrons' temperature. The results show that the shapes of the density profiles and the electron's temperature create a certain effect on the coefficients of absorption, which reaches its peak value (about 50%) for appropriate parameters. Effective absorption occurs in a limited range of parameter q.
In this study, by employing a local fluid theory for warm plasma containing negative ions, an obliquely propagating electromagnetic instability in the lower hybrid frequency range driven by cross-field currents or relative drifts between electrons and ions was investigated. It is found that the growth rate of the lower-hybrid-drift instability (LHDI) can be controlled by appropriate selection of the propagation direction, the wave number and the relative population of the negative ions.
The left-hand superluminous electromagnetic waves, L-O mode and L-X mode, can be excited and observed in the auroral cavity of the Earth during the magnetic storms. The two modes can propagate into outer radiation zone and encounter enhanced resonant interactions with the trapped energetic electrons over a wide range of magnetosphere. A current first-order resonant model is extended to evaluate the stochastic acceleration of electrons by the L-O mode and L-X mode at the higher-order resonance. Similar to the first-order resonance, L-O mode can produce significant acceleration of electrons at the higher harmonic resonances over a wide range of wave normal angles and spatial regions. However, the higher harmonic resonance's contribution for significant electron acceleration by L-X mode is less than that of the first order resonance, with the requirement of higher minimum energies, e.g., -1 MeV in the outer radiation belt. This indicates that L-O mode may be one of the efficient mechanisms for the stochastic acceleration of electrons within the outer radiation zone.