In order to explore the influence of coal mining disturbance on the rockburst occurring in fault zone, this research constructed a mechanical model for the evolution of fault stress, and analyzed the influence of the ratio of horizontal stress to vertical stress on the stability of fault, and the spatial distribution of the stress in fault zone as well as its evolution rule. Furthermore, the rockburst danger at different spatial areas of fault zone was predicated. Results show that: when both sides of the working face are mined out, the fault zone in the working face presents greater horizontal and vertical stresses at its boundaries but exhibits smaller stresses in its middle section; however, the ratio of horizontal stress to vertical stress is found to be greater at middle section and smaller at boundaries. As the working face advances towards the fault, the horizontal and vertical stresses of the fault firstly increases and then decreases; conversely,the ratio of horizontal stress to vertical stress keeps decreasing all the time. Therefore, if the fault zones are closer to the goaf and the coal wall, the stress ratio will be smaller, and the fault slip will be more prone to occur, therefore rockburst danger will be greater. This research results provide guidance for the rockburst prevention and hazard control of the coal mining in fault zone.