Trajectory tracking technology has been the focus of industrial manipulatory applications for many years, and its research has been found in micromanipulation in bioengineering recently. In this paper, a hybrid vision and force control method is applied to the automatic cell injection. The three-dimensional cell injection process involves the trajectory tracking in free space and the force control in contact space. A PD plus feedforward compensation control method is applied to the trajectory tracking in 3D space. Further, a PD-based robust controller is introduced into trajectory tracking while the systemic uncertainty of the cell injection is additionally considered. Both of the two control methods are theoretically proved to be exponential convergent. Finally, the effectiveness of the proposed method is verified as compared with other control methods by its application to trajectory tracking problem.
The decentralized H-infinity control problem for discrete-time singular large-scale systems is considered. Based on the bounded real lemma of discrete-time singular systems, a sufficient condition for the existence of decentralized H-infinity controller for discrete-time singular large-scale systems is presented in terms of the solvability to a certain system of linear matrix inequalities by linear matrix inequality (LMI) approach, and the feasible solutions to the system of LMIs provide a parameterized representation of a set of decentralized H-infinity controller. The given example shows the application of the method.
Songlin WO 1 , Yun ZOU 2 , Shengyuan XU 2 (1.School of Electrical and Information Engineering, Jiangsu Teachers University of Technology, Changzhou Jiangsu 213001, China