您的位置: 专家智库 > >

国家自然科学基金(40805033)

作品数:4 被引量:21H指数:2
相关作者:郑飞朱江更多>>
相关机构:中国科学院大气物理研究所更多>>
发文基金:国家自然科学基金国家重点基础研究发展计划中国科学院知识创新工程重要方向项目更多>>
相关领域:天文地球更多>>

文献类型

  • 4篇中文期刊文章

领域

  • 4篇天文地球

主题

  • 3篇ENSO
  • 1篇大样本
  • 1篇英文
  • 1篇可预报性
  • 1篇集合卡尔曼滤...
  • 1篇集合预报系统
  • 1篇SCHEME
  • 1篇ENSEMB...
  • 1篇ENSEMB...
  • 1篇HINDCA...
  • 1篇INITIA...
  • 1篇INTERD...
  • 1篇MULTIV...
  • 1篇PREDIC...
  • 1篇BALANC...
  • 1篇RATION
  • 1篇ENSEMB...

机构

  • 2篇中国科学院大...

作者

  • 2篇朱江
  • 2篇郑飞

传媒

  • 1篇科学通报
  • 1篇中国科学院研...
  • 1篇Advanc...
  • 1篇Atmosp...

年份

  • 2篇2010
  • 2篇2009
4 条 记 录,以下是 1-4
排序方式:
一个新的大样本ENSO集合预报系统的发展与检验(英文)被引量:2
2010年
详细介绍了一个新的大样本集合预报系统.为了减小ENSO(厄尔尼诺-南方涛动)预报中的预报不确定性,该集合预报系统首先基于一个中等复杂程度的耦合模式,利用集合卡尔曼滤波资料同化方法同化有效的海洋观测资料为集合预报系统提供集合初始场;同时,一个发展的用于12个月预报的一阶线性马尔可夫(Markov)随机误差模式被嵌套到集合预报系统中来模拟模式不确定性.基于1992年11月~2008年10月100个样本的集合回报试验,从确定性预报技巧和概率预报技巧2个方面对集合预报系统的预报水平进行了检验.该集合预报方法能够很有效地将传统的确定性预报扩展到概率预报领域,且检验结果表明,预报样本均值的预报水平要优于单一的确定性预报.对于概率预报而言,集合预报样本能够很好地跟随观测的变化,并且能够提供单纯确定性预报所不能够提供的额外信息.
郑飞朱江
关键词:ENSO集合卡尔曼滤波
Ensemble Hindcasts of ENSO Events over the Past 120 Years Using a Large Number of Ensembles被引量:12
2009年
Based on an intermediate coupled model (ICM), a probabilistic ensemble prediction system (EPS) has been developed. The ensemble Kalman filter (EnKF) data assimilation approach is used for generating the initial ensemble conditions, and a linear, first-order Markov-Chain SST anomaly error model is embedded into the EPS to provide model-error perturbations. In this study, we perform ENSO retrospective forecasts over the 120 year period 1886-2005 using the EPS with 100 ensemble members and with initial conditions obtained by only assimilating historic SST anomaly observations. By examining the retrospective ensemble forecasts and available observations, the verification results show that the skill of the ensemble mean of the EPS is greater than that of a single deterministic forecast using the same ICM, with a distinct improvement of both the correlation and root mean square (RMS) error between the ensemble-mean hindcast and the deterministic scheme over the 12-month prediction period. The RMS error of the ensemble mean is almost 0.2℃ smaller than that of the deterministic forecast at a lead time of 12 months. The probabilistic skill of the EPS is also high with the predicted ensemble following the SST observations well, and the areas under the relative operating characteristic (ROC) curves for three different ENSO states (warm events, cold events, and neutral events) are all above 0.55 out to 12 months lead time. However, both deterministic and probabilistic prediction skills of the EPS show an interdecadal variation. For the deterministic skill, there is high skill in the late 19th century and in the middle-late 20th century (which includes some artificial skill due to the model training period), and low skill during the period from 1906 to 1961. For probabilistic skill, for the three different ENSO states, there is still a similar interdecadal variation of ENSO probabilistic predictability during the period 1886~2005. There is high skill in the late 19th century from 1886 to 1905,
郑飞朱江王慧Rong-Hua ZHANG
关键词:ENSOHINDCAST
A Multivariate Empirical Orthogonal Function-Based Scheme for the Balanced Initial Ensemble Generation of an Ensemble Kalman Filter被引量:2
2010年
The initial ensemble perturbations for an ensemble data assimilation system are expected to reasonably sample model uncertainty at the time of analysis to further reduce analysis uncertainty. Therefore, the careful choice of an initial ensemble perturbation method that dynamically cycles ensemble perturbations is required for the optimal performance of the system. Based on the multivariate empirical orthogonal function (MEOF) method, a new ensemble initialization scheme is developed to generate balanced initial perturbations for the ensemble Kalman filter (EnKF) data assimilation, with a reasonable consideration of the physical relationships between different model variables. The scheme is applied in assimilation experiments with a global spectral atmospheric model and with real observations. The proposed perturbation method is compared to the commonly used method of spatially-correlated random perturbations. The comparisons show that the model uncertainties prior to the first analysis time, which are forecasted from the balanced ensemble initial fields, maintain a much more reasonable spread and a more accurate forecast error covariance than those from the randomly perturbed initial fields. The analysis results are further improved by the balanced ensemble initialization scheme due to more accurate background information. Also, a 20-day continuous assimilation experiment shows that the ensemble spreads for each model variable are still retained in reasonable ranges without considering additional perturbations or inflations during the assimilation cycles, while the ensemble spreads from the randomly perturbed initialization scheme decrease and collapse rapidly.
Zheng FeiZhu Jiang
初始误差和模式误差对ENSO集合预报的影响被引量:5
2009年
基于作者发展的一个ENSO(ElNio-Southern Oscillation)集合预报系统,利用4组14a的(单一或集合)回报试验(试验方案按照是否在预报过程中考虑了初始或模式随机误差扰动进行划分),分别从确定性预报和概率预报角度,检验和探讨了随机的初始误差扰动和模式误差扰动对ENSO集合预报水平的影响.试验结果初步表明,主要体现了模式物理过程不确定性的随机模式误差扰动,能够在整个12个月预报过程有效地提高集合预报系统的预报水平.但是对该系统而言,随机初始误差扰动对预报水平的影响相对较小,其影响时效主要集中在预报的前3个月左右.
郑飞王慧朱江
关键词:ENSO可预报性
共1页<1>
聚类工具0