An improved method of fitting point-by-point is proposed to determine the absorption coefficient from infrared (IR) transmittance. With no necessity of empirical correction factors, the absorption coefficient can be accurately determined for the films with thin thicknesses. Based on this method, the structural properties of the hydrogenated amorphous silicon oxide materials (a-SiOx:H) are investigated. The oxygen-concentration-dependent variation of the Si-O-Si and the Si-H related modes in a-SiOx:H materials is discussed in detail.
In this article, a new type of superimposing morphology comprised of a periodic nanostructure and a random structure is proposed for the first time to enhance the light scattering in silicon-based thin film solar cells. According to the framework of the Reyleigh-Sommerfeld diffraction algorithm and the experimental results of random morphologies, we analyze the light-scattering properties of four superimposing morphologies and compare them with the individual morphologies in detail. The results indicate that the superimposing morphology can offer a better light trapping capacity, owing to the coexistence of the random scattering mechanism and the periodic scattering mechanism. Its scattering property will be dominated by the individual nanostructures whose geometrical features play the leading role.
Three-dimensional (3D) nanostructures in thin film solar cells have attracted significant attention due to their appli- cations in enhancing light trapping. Enhanced light trapping can result in more effective absorption in solar cells, thus leading to higher short-circuit current density and conversion efficiency. We develop randomly distributed and modified ZnO nanorods, which are designed and fabricated by the following processes: the deposition of a ZnO seed layer on sub- strate with sputtering, the wet chemical etching of the seed layer to form isolated islands for nanorod growth, the chemical bath deposition of the ZnO nanorods, and the sputtering deposition of a thin Al-doped ZnO (ZnO:Al) layer to improve the ZnO/Si interface. Solar cells employing the modified ZnO nanorod substrate show a considerable increase in solar energy conversion efficiency.
In this paper, a-Si:H/a-SiGe:H/μc-SiGe:H triple-junction solar cell structure is proposed. By the analyses of mi- croelectronic and photonic structures (AMPS-1D) and our TRJ-F/TRJ-M/TRJ-B tunneling-recombination junction (TRJ) model, the most preferably combined bandgap for this structure is found to be 1.85 eV/1.50 eV/1.0 eV. Using more realistic material properties, optimized thickness combination is investigated. Along this direction, a-Si:H/a-SiGe:H/μc-SiGe:H triple cell with an initial efficiency of 12.09% (Voc = 2.03 V, FF = 0.69, Jsc = 8.63 mA/cm^2, area = 1 cm^2) is achieved in our laboratory.
The effects of annealing rate and morphology of sol–gel derived zinc oxide (ZnO) thin films on the performance of inverted polymer solar cells (IPSCs) are investigated. ZnO films with different morphologies are prepared at different annealing rates and used as the electron transport layers in IPSCs. The undulating morphologies of ZnO films fabricated at annealing rates of 10 ℃/min and 3 ℃/min each possess a rougher surface than that of the ZnO film fabricated at a fast annealing rate of 50 ℃/min. The ZnO films are characterized by atomic force microscopy (AFM), optical transmittance measurements, and simulation. The results indicate that the ZnO film formed at 3 ℃/min possesses a good-quality contact area with the active layer. Combined with a moderate light-scattering, the resulting device shows a 16% improvement in power conversion efficiency compared with that of the rapidly annealed ZnO film device.