We have investigated the anisotropic magnetocaloric effect and the rotating field magnetic entropy in Dy FeO3 single crystal. A giant rotating field entropy change of -ΔSM^R = 16.62 J/kg·K was achieved from b axis to c axis in bc plane at 5 K for a low field change of 20 k Oe. The large anisotropic magnetic entropy change is mainly accounted for the 4 f electron of rare-earth Dy^3+ ion. The large value of rotating field entropy change, together with large refrigeration capacity and negligible hysteresis, suggests that the multiferroic ferrite Dy FeO3 singlecrystal could be a potential material for anisotropic magnetic refrigeration at low field, which can be realized in the practical application around liquid helium temperature region.
the spin-reorientation transition from out-of-plane to in-plane in Fe/Si film is widely reported, the tuning of in-plane spin orientation is not yet well developed. Here, we report the thickness-, temperature- and Cu-adsorptioninduced in-plane spin-reorientation transition processes in Fe/Si (557) film, which can be attributed to the coexistence of two competing step-induced uniaxial magnetic anisotropies, i.e., surface magnetic anisotropy with magnetization easy axis perpendicular to the step and volume magnetic anisotropy with magnetization easy axis parallel to the step. For Fe film thickness smaller than 32 monolayer (ML), the magnitudes of two effects under various temperatures are extracted from the thickness dependence of uniaxial magnetic anisotropy. For Fe film thickness larger than 32 ML, the deviation of experimental results from fitting results is understood by the strain-relief-induced reduction of volume magnetic anisotropy. Additionally, the surface and volume magnetic anisotropies are both greatly reduced after covering Cu capping layer on Fe/Si (557) film while no significant influence of NaC1 capping layer on step-induced magnetic anisotropies is observed. The experimental results reported here provide various practical methods for manipulating in-plane spin orientation of Fe/Si films and improve the understanding of step-induced magnetic anisotropies.
Magnetocaloric effect (MCE) in polycrystalline HoMn205 was investigated by isothermal magnetization curves from 2 K to 50 K. A relatively large magnetic entropy change, ASM = 7.8 J/(kg·K), was achieved with the magnetic field up to 70 kOe (10e = 79.5775 A·m-1). The magnetic entropy change is reversible in the whole range of temperature. The contributions of elastic and magnetoelastic energy to the changing of the magnetic entropy are discussed in terms of the Landau theory. The reversibility of MCE with maximal refrigerant capacity Rc = 216.7 J/kg makes polycrystalline HoMn205 promising as a magnetic refrigerant.