In this paper, the stable structure and the electronic and optical properties of nitric oxide (NO) adsorption on the anatase TiO2 (101) surface are studied using the plane-wave ultrasoft pseudopotential method, which is based on the density functional theory. NO adsorption on the surface is weak when the outermost layer terminates on twofold coordinated oxygen atoms, but it is remarkably enhanced on the surface containing O vacancy defects. The higher the concentration of oxygen vacancy defects, the stronger the adsorption is. The adsorption energies are 3.4528 eV (N end adsorption), 2.6770 eV (O end adsorption), and 4.1437 eV (horizontal adsorption). The adsorption process is exothermic, resulting in a more stable adsorption structure. Furthermore, O vacancy defects on the TiO2 (101) surface significantly contribute to the absorption of visible light in a relatively low-energy region. A new absorption peak in the low-energy region, corresponding to an energy of 0.9 eV, is observed. However, the TiO2 (101) surface structure exhibits weak absorption in the low-energy region of visible light after NO adsorption.
The TiO_2(101) surface was studied using the plane-wave ultrasoft pseudopotential method based on the density functional theory,with emphasis on the structure,surface energy,band structure,density of states, and charge population.The anatase TiO_2(101) crystal surface structure,whose outermost and second layers were terminated by twofold coordinated oxygen atoms and fivefold coordinated titanium atoms,was found to be much more stable.The surface energy of the 18-layer atoms model was 0.580 J/m2.The surface electronic structure was similar to that of the bulk and no surface state.Compared with the bulk structure,the band gap increased 0.36 eV, the Ti5c-02c bond lengths reduced 0.171(?) after relaxation,and the charges of the surface were transferred to the body.Analysis of the optical properties of the TiO_2(101) surface showed that it did not absorb in the low-energy region.An absorption edge in the ultraviolet region corresponding to the energy of 3.06 eV was found.