2025年1月25日
星期六
|
欢迎来到青海省图书馆•公共文化服务平台
登录
|
注册
|
进入后台
[
APP下载]
[
APP下载]
扫一扫,既下载
全民阅读
职业技能
专家智库
参考咨询
您的位置:
专家智库
>
>
国家高技术研究发展计划(2007AA12162)
作品数:
1
被引量:8
H指数:1
相关作者:
吴春花
夏俊士
杜培军
更多>>
相关机构:
国家测绘局
更多>>
发文基金:
中国地质调查局地质调查项目
国家高技术研究发展计划
更多>>
相关领域:
自动化与计算机技术
更多>>
相关作品
相关人物
相关机构
相关资助
相关领域
题名
作者
机构
关键词
文摘
任意字段
作者
题名
机构
关键词
文摘
任意字段
在结果中检索
文献类型
1篇
中文期刊文章
领域
1篇
自动化与计算...
主题
1篇
遥感
1篇
水体提取
1篇
投票法
1篇
RANDOM
1篇
BAGGIN...
1篇
FOREST...
机构
1篇
国家测绘局
作者
1篇
杜培军
1篇
夏俊士
1篇
吴春花
传媒
1篇
遥感信息
年份
1篇
2012
共
1
条 记 录,以下是 1-1
全选
清除
导出
排序方式:
相关度排序
被引量排序
时效排序
一种基于投票法融合的ASTER遥感影像水体提取方法
被引量:8
2012年
遥感影像在水资源调查和洪涝灾害监测中发挥着重要作用,但从遥感影像中提取水体通常面临着阴影和狭小水体漏提等难题。针对单一方法在水体提取中的局限性,引入分类器集成的思想,提出一种基于投票法融合的水体提取方法,首先利用Bagging、Random Forests和神经网络(NN)分类器对遥感影像进行分类,然后采用多数投票法从决策层融合3个分类结果,得到研究区水体提取结果。试验结果表明,该方法能够有效去除阴影且能较好地识别狭小水体,具有良好的应用效果。
吴春花
杜培军
夏俊士
关键词:
遥感
投票法
水体提取
BAGGING
RANDOM
FORESTS
全选
清除
导出
共1页
<
1
>
聚类工具
0
执行
隐藏
清空
用户登录
用户反馈
标题:
*标题长度不超过50
邮箱:
*
反馈意见:
反馈意见字数长度不超过255
验证码:
看不清楚?点击换一张