In order to facilitate engineering design and coastal flooding protection, the potential storm surge induced by a typhoon is studied.Using an unstructured mesh, a coupled model which combines the advanced circulation ( ADCIRC ) hydrodynamic model and simulating waves nearshore ( SWAN ) model is applied to analyze the storm surge and waves on the coast of Jiangsu Province.The verifications of wind velocity, tidal levels and wave height show that this coupling model performs well to reflect the characteristics of the water levels and waves in the studied region.Results show that the effect of radiation stress on storm surge is significant, especially in shallow areas such as the coast of Jiangsu Province and the Yangtze estuary.By running the coupled model, the simulated potential flooding results can be employed in coastal engineering applications in the Jiangsu coastal area, such as storm surge warnings and extreme water level predictions.
In order to optimize the design of a 12.5 m deepwater channel project and protect the ecological environment, it is necessary to study the habitat evaluation of species in the engineered area. A coupled eco-hydrodynamic model, which combines a hydrodynamic model (ADCIRC) and a habitat suitability index (HSI) model is developed for target fish (Coilia nasus) and benthos (Corbicula fluminea) in the Yangtze River in order to predict the ecological changes and optimize the regulation scheme. Based on the existing research concerning the characteristics of Coilia nasus and Corbicula fluminea, the relationship between the target species and water environment factors is established. The verification results of tidal level, velocity and biological density show that the proposed coupling model performs well when predicting ecological suitability in the studied region. The results indicate a slight improvement in the potential habitat availability for the two species studied as the natural hydraulic conditions change after the deep-water channel regulation works.