A new type of a heat pump driven three-stage lithium bromide liquid desiccant deep dehumidification processor is presented,which can dehumidify the outdoor humid air to a rather dry state,even when there is no available indoor exhaust air.The test results show that with an outdoor air temperature of 28 to 31 ℃ and an outdoor air humidity ratio of 11 to 14 g/kg,the supply air temperature and the supply air humidity ratio are 1.6 to 2.6 ℃ and 2.6 to 3.0 g/kg,respectively,and the coefficient of performance(COP)of the processor is 1.8.During the test,a liquid pipeline link problem leading to mixture losses of hot and cold liquid desiccants is found.These pipelines are modified.Then,the performance of the modified processor is investigated.And the experimental results show that with an outdoor air temperature of 25 to 32 ℃ and an outdoor air humidity ratio of 18 to 21 g/kg,the supply air temperature and the supply air humidity ratio are 3.2 to 4.0 ℃ and 3.4 to 3.6 g/kg,respectively,and the COP is 2.8.Finally,a mathematical model of the processor is established.The comparison of the simulation results and the test results of the processor exhibits that the pipeline modification improves the performance by about 20%.
The influence of the panel position on the cooling performance of a radiant panel is analyzed.The coupled simulation of convection and radiation is set up by a computational fluid dynamics(CFD)method.The simulations with different panel positions and different indoor heat sources are used to calculate the cooling capacity of the radiant panel and the indoor thermal environment.The simulation results are in good agreement with the experimental results.The results show that when the indoor heat source temperature is low,the convective heat flux is the main influence factor of the cooling capacity and the radiant panel should be placed on the wall or on the ceiling.Otherwise,when the indoor heat source temperature is high,the radiation heat flux is the main factor and the radiant panel should be placed as near to the heat sources as possible.