The collisional current-filamentation instability (CFI) is studied for a nonrelativistic electron beam penetrating an infinite uniform plasma. It is analytically shown that the CFI is driven by the drift-anisotropy rather than the classical anisotropy of the beam and the background plasma. Therefore, collisional effects can either attenuate or enhance the CFI depending on the drift-anisotropy of the beam-plasma system. Numerical results are given for some typical parameters, which show that collisional effects cannot stabilize but enhance the CFI in a dense plasma. Thus, the CFI may play a dominant role in the fast electron transport and deposition relevant to the fast ignition scenario (FIS).
This paper reports the carrier-envelop phase (CEP) locking for the 5 fs re-compressed laser pulse generated from a chirped pulse amplified (CPA) Ti:sapphire laser at 1 kHz repetition rate. A phase locking feedback system with two loops was designed to control the fast fluctuation arising from the seeding laser and the slow fluctuation arising from the sub-mJ amplified pulse. The principle and structure of the phase control system, including the CEP detection, servo loop design and phase locking result, are analyzed. The experiment shows that our phase locking system can be well used to establish the stable phase locking of few-cycle amplified laser pulse, and the CEP variation of below 53 mrad (rms) was demonstrated during a locking period of more than 3 h.
DU Qiang ZHU JiangFeng TENG Hao YUN ChenXia WEI ZhiYi
This paper analytically investigates the interaction of light filaments generated by a femtosecond laser beam in air. It obtains the Hamiltonian of a total laser field and interaction force between two filaments with different phase shifts and crossing angles. The property of the interaction force, which leads the attraction or repulsion of filaments, is basically dependent on the phase shift between filaments. The crossing angle between two filaments can only determine the magnitude of the interaction force, but does not change the property of the force.
This paper demonstrates the triggering and guiding of the stationary high voltage (HV) discharges at 5-40kV by using plasma filaments generated by femtosecond laser pulses in air. A significant reduction of the breakdown voltage threshold due to the pre-ionization of the air gap by laser filamentation is observed. The discharge experiments are performed by using laser pulses with different energy from 15-60 mJ. The electron density of filaments is detected by sonography method. The influence of the electron density of laser filaments on the triggering and guiding HV discharge is experimentally investigated. The results have shown that the behaviour of plasma filaments can strongly affect the efficiency of triggering and guiding HV discharge.
With one-and two-dimensional particle-in-cell(PIC)codes,we simulate the generation of high power terahertz(THz)emission from the interaction of ultrashort intense lasers with tenuous plasma and gas targets.By driving high-amplitude electron plasma waves either with a laser wakefield or the beatwave of two laser pulses,powerful THz electromagnetic pulses can be produced by linear mode conversion in inhomogeneous plasma or by the transient current induced at the surfaces of a thin plasma layer of few plasma wavelengths.Even with incident lasers at moderate intensity such as 1017W/cm2,the produced emission can be at the level of tens of MW in power and capable of affording field strengths of a few MV/cm,suitable for the studies of THz nonlinear physics.With field ionization included in the PIC codes,THz emission from laser interaction with tenuous gas targets is simulated.It is found that the transient transverse current formed during the ionization processes is responsible for the THz emission.With this mechanism,onemay also obtain THz fields ofMV/cm at lower laser intensity as compared with the schemes of plasma-wave excitation.
Mechanism of terahertz (THz) pulse generation in gases irradiated by ultrashort laser pulses is investigated theoretically. Quasi-static transverse currents produced by laser field ionization of gases and the longitudinal modulation in formed plasmas are responsible for the THz emission at the electron plasma frequency, as demonstrated by particle-in-cell simulations including field ionization. The THz field amplitude scaling with the laser amplitude within a large range is also discussed.
The interaction of ultrashort intense circularly polarized laser with ultra thin overdense foil is studied by particle-in-cell simulation and analytic model. It is found that with the balance between pondermotive force and electrostatic force, highly quasi-monoenergetic proton beam can be generated by Phase Stable Acceleration (PSA) process. As in conventional accelerators, ion will be accelerated and bunched up in the longitudinal direction at the same time.
Image Plate (IP) is convenient to be used and very suitable for radiation detection because of its advantages such as wide dynamic range, high detective quantum efficiency, ultrahigh sensitivity and superior linearity. The function mechanism and characteristics of IP are introduced in this paper. IP was employed in the study of hot electrons generated from intense laser-plasma interaction. The angular distri- bution and energy spectrum of hot electrons were measured with IP in the experi- ments. The results demonstrate that IP is an effective radiation detector for the study of laser-plasma interaction.