GESTs (gene expression similarity and taxonomy similarity), a gene functional prediction approach previously proposed by us, is based on gene expression similarity and concept similarity of functional classes defined in Gene Ontology (GO). In this paper, we extend this method to protein-protein interac-tion data by introducing several methods to filter the neighbors in protein interaction networks for a protein of unknown function(s). Unlike other conventional methods, the proposed approach automati-cally selects the most appropriate functional classes as specific as possible during the learning proc-ess, and calls on genes annotated to nearby classes to support the predictions to some small-sized specific classes in GO. Based on the yeast protein-protein interaction information from MIPS and a dataset of gene expression profiles, we assess the performances of our approach for predicting protein functions to “biology process” by three measures particularly designed for functional classes organ-ized in GO. Results show that our method is powerful for widely predicting gene functions with very specific functional terms. Based on the GO database published in December 2004, we predict some proteins whose functions were unknown at that time, and some of the predictions have been confirmed by the new SGD annotation data published in April, 2006.
GAO Lei1, LI Xia1,2, GUO Zheng1,2, ZHU MingZhu1, LI YanHui1 & RAO ShaoQi1,3 1 Department of Bioinformatics, Harbin Medical University, Harbin 150086, China
Proteins rarely function in isolation inside and outside cells, but operate as part of a highly intercon- nected cellular network called the interaction network. Therefore, the analysis of the properties of drug-target proteins in the biological network is especially helpful for understanding the mechanism of drug action in terms of informatics. At present, no detailed characterization and description of the topological features of drug-target proteins have been available in the human protein-protein interac- tion network. In this work, by mapping the drug-targets in DrugBank onto the interaction network of human proteins, five topological indices of drug-targets were analyzed and compared with those of the whole protein interactome set and the non-drug-target set. The experimental results showed that drug-target proteins have higher connectivity and quicker communication with each other in the PPI network. Based on these features, all proteins in the interaction network were ranked. The results showed that, of the top 100 proteins, 48 are covered by DrugBank; of the remaining 52 proteins, 9 are drug-target proteins covered by the TTD, Matador and other databases, while others have been dem- onstrated to be drug-target proteins in the literature.
ZHU MingZhu1, GAO Lei1, LI Xia1,2 & LIU ZhiCheng1 1 School of Biomedical Engineering, Capital Medical University, Beijing 100069, China