Space-borne high frequency (HF) radar sounder is an effective tool for investigation of lunar subsurface structure in lunar exploration. The primary strategy of radar sounder technology for subsurface structure detection is utilization of the nadir echoes time delay and intensity difference from the lunar surface and subsurface. It is important to fully understand electromagnetic wave propagation, scattering, and attenuation through the lunar media in order to retrieve information of lunar layering structure from weak nadir echoes of the subsurface, which is simultaneously interfered by strong off-nadir surface clutters. Based on the Kirchhoff approximation (KA) of rough surface scattering and the ray tracing of geometric optics, a numerical simulation of radar echoes from lunar layering structures is developed. According to the lunar surface feature, the topography of mare and highland surfaces is numerically generated, and the triangulated network is employed to make digital elevations of the whole lunar surface. Scattering from the lunar surface and subsurface is numerically calculated using KA approach. Radar echoes and its range images are numerically simulated, and their dependence on the parameters of lunar layering interfaces is discussed. The approach of this paper can also be utilized to investigate subsurface structures in Mars and other planetary exploration.