A weakly pandiagonal Latin square of order n over the number set {0, 1, . . . , n-1} is a Latin square having the property that the sum of the n numbers in each of 2n diagonals is the same. In this paper, we shall prove that a pair of orthogonal weakly pandiagonal Latin squares of order n exists if and only if n ≡ 0, 1, 3 (mod 4) and n≠3.