On the silicon-on-insulator platform, an ultra compact temperature-insensitive modulator based on a cascaded microring assistant Mach-Zehnder interferometer is proposed and demonstrated with numerical simulation. According to the calculated results, the tolerated variation of ambient temperature can be as high as 134 ℃ while the footprint of such a silicon modulator is only 340 μm2.
In this paper,we introduce a horizontal slot in the reversed-rib chalcogenide glass waveguide to tailor its dispersion characteristics.The waveguide exhibits a flat and low dispersion over a wavelength range of 1080 nm,in which the dispersion fluctuates between-10.6 ps·nm-1·km-1 and +11.14 ps·nm-1·km-1.The dispersion tailoring effect is due to the mode field transfer from the reversed-rib waveguide to the slot with the increase of wavelength,which results in the extension of the low dispersion band.Moreover,the nonlinear coefficient and the phase-matching condition of the fourwave mixing process in this waveguide are studied,showing that the waveguide has great potential in nonlinear optical applications over a wide wavelength range.
An ultra-compact variable optical attenuator based on slow light photonic crystal waveguide with thermo- optic effect is demonstrated. Along with power consumption of as low as 30.7 roW, a variable attenuation range of 10 dB is experimentally achieved by shifting the transmission spectrum at about 4.6 nm. The length of the ProPosed device is only 20 μm.
Surface-plasmon (SP) enhancement of amorphous-silicon-nitride (a-SiNx) light emission with single-layer gold (Au) waveguides is experimentally demonstrated through time-resolved photoluminescence measure- ment. The a-SiN~ active layer with strong steady-state photoluminescence at 560 nm is prepared by plasma-enhanced chemical vapor deposition, and ricated by magnetron sputtering. The maximum the Au waveguide on the top of the a-SiNx layer is lab- Purcell factor value of -3 is achieved with identified SP resonance of the Au waveguide at -530 nm.