Geometries and binding energies were predicted at the B3LYP/6-311+G* level for the guanine-BX3 (X = F, Cl) systems and four isomers with no imaginary frequencies have been obtained for both guanine-BF3 and guanine-BCl3, respectively. Single energy calculations using much larger basis sets (6-311+G(2df, p) and aug-cc-pVDZ were carded out as well. It was found that the most stable isomer of guanine-BF3 is BF3 connected to N3 of guanine with the stabilization energy of-19.93 kcal/mol (BSSE corrected), while that of guanine-BC13 is BC13 connected to O10 of guanine having stabilization energy of -15.02 kcal/mol at the same level. The analyses for the combining interaction between BX3 and guanine with the atom-in-molecules theory (AIM) and natural bond orbital (NBO) methods have been performed. The results indicated that all the isomers are formed with σ-p type interactions between guanine and BX3, in which pyridine-type nitrogen or carbonyl oxygen or nitrogen atom of amino group offers its lone pair electrons to the empty p orbital of boron atom and the concomitance of charge transfer from guanine to BX3 has occurred. Still, one or two hydrogen bonds exist in some isomers of guanine-BX3 system and contribute to the stability of complex systems. Frequency analysis suggested that the stretching vibration of BX3 undergoes a red shift in complexes. Guanine-BF3 complex is more stable than guanine-BC13 although the B-Y (Y=N, O) bond distance in the latter is shorter.