Inward energy transport (pinch phenomenon) in the electron channel is observed in HT-7 plasmas using off-axis ion cyclotron resonance frequency (ICRF) heating. Experimental results and power balance transport analysis by TRANSP code are presented in this article. With the aids of GLF23 and Chang-Hinton transport models, which predict energy diffusivity in experimental conditions, the estimated electron pinch velocity is obtained by experimental data and is found reasonably comparable to the results in the previous study, such as Song on Tore Supra. Density scanning shows that the energy convective velocity in the electron channel has a close relation to density scale length~ which is qualitatively in agreement with Wang's theoretical prediction. The parametric dependence of electron energy convective velocity on plasma current is still ambiguous and is worthy of future research on EAST.
Edge profiles in Ohmic and lower hybrid (LH) wave heated discharges in EAST are presented. A comparison of the measured profiles is made with those from the theoretical prediction for the scrape-off-layer (SOL) width. The edge plasma parameters are diagnosed by a triple probe divertor diagnostic system and fast reciprocating probes at the outer mid-plane. The experimental results show that the SOL width of double-null (DN) divertor plasmas in EAST appears to exhibit a negative dependence on the power crossing the separatrix, which is consistent with the collisional SOL scalings of JET and Alcator C-Mod. This will provide useful information for extrapolation to the ITER SOL width scaling for power deposition.