您的位置: 专家智库 > >

国家自然科学基金(61202212)

作品数:6 被引量:10H指数:2
相关作者:田东平殷越安波史忠植李乃乾更多>>
相关机构:宝鸡文理学院中国科学院大学中国科学院更多>>
发文基金:国家自然科学基金陕西省教育厅科研计划项目国家重点基础研究发展计划更多>>
相关领域:自动化与计算机技术理学更多>>

文献类型

  • 6篇中文期刊文章

领域

  • 5篇自动化与计算...
  • 1篇理学

主题

  • 2篇语义标注
  • 2篇图像
  • 2篇图像语义
  • 2篇图像语义标注
  • 2篇PLSA
  • 2篇IMAGE_...
  • 1篇语义鸿沟
  • 1篇智能体
  • 1篇上下文
  • 1篇随机场
  • 1篇随机游走
  • 1篇随机游走模型
  • 1篇图像标注
  • 1篇图像检索
  • 1篇自动图像
  • 1篇自动图像标注
  • 1篇马尔科夫
  • 1篇马尔科夫随机...
  • 1篇基于上下文
  • 1篇公共活动

机构

  • 2篇宝鸡文理学院
  • 1篇中国科学院
  • 1篇中国科学院大...

作者

  • 2篇田东平
  • 1篇李乃乾
  • 1篇史忠植
  • 1篇安波
  • 1篇殷越

传媒

  • 3篇High T...
  • 2篇小型微型计算...
  • 1篇中国科学:信...

年份

  • 4篇2017
  • 2篇2016
6 条 记 录,以下是 1-6
排序方式:
Semantic image annotation based on GMM and random walk model被引量:1
2017年
Automatic image annotation has been an active topic of research in computer vision and pattern recognition for decades.A two stage automatic image annotation method based on Gaussian mixture model(GMM) and random walk model(abbreviated as GMM-RW) is presented.To start with,GMM fitted by the rival penalized expectation maximization(RPEM) algorithm is employed to estimate the posterior probabilities of each annotation keyword.Subsequently,a random walk process over the constructed label similarity graph is implemented to further mine the potential correlations of the candidate annotations so as to capture the refining results,which plays a crucial role in semantic based image retrieval.The contributions exhibited in this work are multifold.First,GMM is exploited to capture the initial semantic annotations,especially the RPEM algorithm is utilized to train the model that can determine the number of components in GMM automatically.Second,a label similarity graph is constructed by a weighted linear combination of label similarity and visual similarity of images associated with the corresponding labels,which is able to avoid the phenomena of polysemy and synonym efficiently during the image annotation process.Third,the random walk is implemented over the constructed label graph to further refine the candidate set of annotations generated by GMM.Conducted experiments on the standard Corel5 k demonstrate that GMM-RW is significantly more effective than several state-of-the-arts regarding their effectiveness and efficiency in the task of automatic image annotation.
田东平
基于上下文相关模型的图像语义标注被引量:1
2016年
针对现有标注算法精度不高的问题,提出一种基于上下文相关模型的图像语义标注方法.首先,根据语义概念在训练数据集中的共现频率,对每个概念构造马尔科夫随机场图结构;其次,从已标注图像的文本信息出发构建一个非对等模态的概率潜语义分析(PLSA)模型,计算图像和语义概念的联合概率,并将其作为马尔科夫随机场(MRF)中点的观察值.与此同时,基于PLSA设计马尔科夫随机场模型的点势函数和边势函数;最后,通过正则化最大伪似然估计学习MRF的模型参数,利用迭代条件模式进行模型推理,从而获得未知图像的精确化语义标注结果.实验表明,所提出方法的性能明显优于若干经典的自动图像标注方法,而且具有更好的检索性能.
田东平李乃乾
关键词:图像语义标注马尔科夫随机场图像检索
Semi-supervised learning based probabilistic latent semantic analysis for automatic image annotation被引量:1
2017年
In recent years,multimedia annotation problem has been attracting significant research attention in multimedia and computer vision areas,especially for automatic image annotation,whose purpose is to provide an efficient and effective searching environment for users to query their images more easily. In this paper,a semi-supervised learning based probabilistic latent semantic analysis( PLSA) model for automatic image annotation is presenred. Since it's often hard to obtain or create labeled images in large quantities while unlabeled ones are easier to collect,a transductive support vector machine( TSVM) is exploited to enhance the quality of the training image data. Then,different image features with different magnitudes will result in different performance for automatic image annotation. To this end,a Gaussian normalization method is utilized to normalize different features extracted from effective image regions segmented by the normalized cuts algorithm so as to reserve the intrinsic content of images as complete as possible. Finally,a PLSA model with asymmetric modalities is constructed based on the expectation maximization( EM) algorithm to predict a candidate set of annotations with confidence scores. Extensive experiments on the general-purpose Corel5k dataset demonstrate that the proposed model can significantly improve performance of traditional PLSA for the task of automatic image annotation.
Tian Dongping
基于博弈论的重大公共活动安保策略设计算法被引量:2
2017年
重大公共活动,比如大型赛事,由于其参与人数众多,影响力广泛,一直是恐怖分子的重要攻击目标.因此,重大公共活动的安保问题也是各国政府必须面对的一项难题.由于公共活动通常场地复杂,参与者多样,而安全部门可支配的安保资源有限,如何最大限度地利用有限的资源保障活动安全进行成为了一项极具挑战的任务.本文以博弈模型来描述重大公共活动的安保问题,该模型既考虑了公共活动本身人流量与时间相关的特点,也考虑了安全部门与潜在的恐怖分子的复杂的策略空间.基于此模型,本文研究了安保资源转移时间可忽略与转移时间不可忽略两种情况,并分别提出算法SCOUT-A(Scheduling seCurity res Ources in pUblic evenTs with no relocating delAy)和SCOUT-C(Scheduling seCurity resOurces in pUblic evenTs against Continuous strategy space)来求解安保部门的最优策略.实验证明,本文提出的算法比已有的算法为安保部门带来更好的收益.
殷越安波史忠植
关键词:博弈论多智能体
A visual awareness pathway in cognitive model ABGP
2016年
The cognitive model ABGP is a special model for agents,which consists of awareness,beliefs,goals and plans. The ABGP agents obtain the knowledge directly from the natural scenes only through some single preestablished rules like most agent architectures. Inspired by the biological visual cortex( V1) and the higher brain areas perceiving the visual feature,deep convolution neural networks( CNN) are introduced as a visual pathway into ABGP to build a novel visual awareness module. Then a rat-robot maze search simulation platform is constructed to validate that CNN can be used for the awareness module of ABGP. According to the simulation results,the rat-robot implemented by the ABGP with the CNN awareness module reaches the excellent performance of recognizing guideposts,which directly enhances the capability of the communication between the agent and the natural scenes and improves the ability to recognize the real world,which successfully demonstrates that an agent can independently plan its path in terms of the natural scenes.
马刚Yang XiLu ChengxiangZhang BoShi Zhongzhi
关键词:AWARENESS
融合PLSA和随机游走模型的自动图像标注被引量:5
2017年
为了有效克服语义鸿沟问题,提出一种融合概率潜语义分析(PLSA)和随机游走(random walk,RW)模型的图像语义标注方法.从已标注图像的文本信息出发构建一个非对等模态的PLSA模型,以此计算未知图像的初始语义标注;,基于初始标注的语义信息和与之关联的图像的视觉信息构造标签相似性图,以有效避免图像标注过程中因多义词而引入的噪声数据;在所构造的相似性图上执行随机游走过程,进一步挖掘和分析初始标注之间的潜在语义关联,从而获得未知图像的精确化语义标注.通过在Corel5k图像集上的实验表明,本文方法(PLSA-RW)的性能明显优于若干经典的自动图像标注方法,而且具有更好的检索性能.
田东平
关键词:图像语义标注随机游走语义鸿沟
共1页<1>
聚类工具0