In some events, weak fast solar bursts (near the level of the quiet Sun) were observed in the background of numerous spikes in emission and absorption. In such a case, the background contains the noise signals of the receiver. In events on 2005 September 16 and 2002 April 14, the solar origin of fast bursts was confirmed by simultaneous recording of the bursts at several remote observatories. The noisy background pixels in emission and absorption can be excluded by subtracting a higher level of continuum when constructing the spectra. The wavelet spectrum, noisy pro- files in different polarization channels and a spectrum with continuum level greater than zero demonstrates the noisy character of pixels with the lowest levels of emission and absorption. Thus, in each case, in order to judge the solar origin of all spikes, it is necessary to determine the level of continuum against the background of which the solar bursts are observed. Several models of microwave spikes are discussed. The electron cyclotron maser emission mechanism runs into serious problems with the in- terpretation of microwave millisecond spikes: the main obstacles are too high values of the magnetic field strength in the source (Pe 〈 uB). The probable mechanism is the interaction of plasma Langmuir waves with ion-sound waves (l + s → t) in a source related to shock fronts in the reconnection region.
Gennady P.ChernovRobert A.SychGuang-Li HuangHai-Sheng JiYi-Hua YanCheng-Ming Tan
This paper shows some improvements and new results of calibration of Chinese solar radio spectrometer by analyzing the daily calibration data recorded in the period of 1997-2007. First, the calibration coefficient is fitted for three bands (1.0-2.0 GHz, 2.6-3.8 GHz, 5.2-7.6 GHz) of the spectrometer by using the moving-average method confined by the property of the daily calibration data. By this calibration coefficient, the standard deviation of the calibration result was less than 10 sfu for 95% frequencies of 2.6-3.8 GHz band in 2003. This result is better than that calibrated with the constant coefficient. Second, the calibration coefficient is found in good correlation with local air temperature for most frequencies of 2.6-3.8 GHz band. Moreover, these results are helpful in the research of the quiet solar radio emission.
Based on the joint-observations of the radio broadband spectral emissions of the solar eclipse on August 1, 2008 at Jiuquan (total eclipse) and Huairou (partial eclipse) at the frequencies of 2.00-5.60 GHz (Jiuquan), 2.60-3.80 GHz (Chinese solar broadband radiospectrometer, SBRS/Huairou), and 5.20-7.60 GHz (SBRS/Huairou), the authors assemble a successive series of broadband spectra with a frequency of 2.60-7.60 GHz to observe the solar eclipse synchronously. This is the first attempt to analyze the solar eclipse radio emission under the two telescopes located at different places with broadband frequencies in the periods of total and partial eclipses. With these analyses, the authors made a semiempirical model of the coronal plasma density of the quiet Sun, which can be expressed as ne 1.42×109(r-2+1.93r-5) (cm-3), in the space range of r=1.039-1.212 R , and made a comparison with the classic model.
The Chinese Spectral Radio Heliograph(CSRH) is an advanced aperture synthesis solar radio heliograph, independently developed by National Astronomical Observatories, Chinese Academy of Sciences. It consists of 100 reflector antennas,which are grouped into two antenna arrays(CSRH-I and CSRH-II) for low and high frequency bands respectively. The frequency band of CSRH-I is 0.4–2 GHz and that for CSRH-II is 2–15 GHz. In the antenna and feed system, CSRH uses eleven feeds to receive signals coming from the Sun. The radiation pattern has a lower side lobe and the back lobe of the feed is well illuminated. The characteristics of gain G and antenna noise temperature T affect the quality of solar radio imaging. For CSRH, the measured G is larger than 60 d Bi and T is less than 120 K. After CSRH-I was established, we successfully captured a solar radio burst between 1.2–1.6 GHz on 2010 November12 using this instrument and this event was confirmed through observations with the Solar Broadband Radio Spectrometer at 2.84 GHz and the Geostationary Operational Environmental Satellite. In addition, an image obtained from CSRH-I clearly revealed the profile of the solar radio burst. The other observational work involved the imaging the Fengyun-2E geosynchronous satellite which is assumed to be a point source.Results indicate that the data processing method applied in this study for deleting errors in a noisy image could be used for processing images from other sources.