The reverse martensitic transformation of TiNi alloy wires prestrained in the parent phase was studied. Experimental results shou, that the reverse transformation of the TiNi allogys prestrained in the parent phase is significantly different from that of the TiNi alloys prestrained in the martensite phase. Three continual peaks appear on the DSC curves of wires with a small prestrain and one high temperature peak appears on the DSC curves of wires with a large prestrain.
The recovery stress characteristics of a TiNi shape memory alloy wire under different constraint conditions were studied. The results show that the recovery stress rate (dσ/dT) in the second heating cycle increases significantly with the increasing constraining-spring coefficient in the first heating cycle. As a result, a distinct discontinuity appears on the recovery stress curves of the TiNi alloy wires in the second heating process. Also, the results of differential scanning calorimeter(DSC) measurements show that after the thermomechanical process, the heating curve of the TiNi alloy wire consists of two independent endothermic peaks.