The specific interaction between sense and antisense peptides was studied by high-performance affinity chromatography (HPAC) and quartz crystal microbalance (QCM) biosensor. Fragment 1-14 of human interferon-β (hIFN-β) was chosen as sense peptide and its three antisense peptides (AS-IFN 1, AS-IFN 2, and AS-IFN 3) were designed according to the degeneracy of genetic codes. The affinity column was prepared with sense peptide as ligand and the affinity chromatographic behavior was evaluated. Glu-substituted antisense peptide (AS-IFN 3) showed the strongest binding to immobilized sense peptide at pH 7.5. A quartz crystal microbalance-flow injection analysis (QCM-FIA) system was introduced to investigate the recognition process in real-time. The equilibrium dissociation constants between sense peptide and AS-IFN 1, AS-IFN 2 and AS-IFN 3 measured 2.08×10-4, 1.31×10-4 and 2.22× 10-5 mol/L, respectively. The mechanism study indicated that the specific recognition between sense peptide and AS-IFN 3 was due to sequence-dependent and multi-modal affinity interaction.
LUO Jia HUANG YanYan XIONG ShaoXiang LIU GuoQuan ZHAO Ruit