In this paper, the global impulsive exponential synchronization problem of a class of chaotic delayed neural networks (DNNs) with stochastic perturbation is studied. Based on the Lyapunov stability theory, stochastic analysis approach and an efficient impulsive delay differential inequality, some new exponential synchronization criteria expressed in the form of the linear matrix inequality (LMI) are derived. The designed impulsive controller not only can globally exponentially stabilize the error dynamics in mean square, but also can control the exponential synchronization rate. Furthermore, to estimate the stable region of the synchronization error dynamics, a novel optimization control al- gorithm is proposed, which can deal with the minimum problem with two nonlinear terms coexisting in LMIs effectively. Simulation results finally demonstrate the effectiveness of the proposed method.
In this paper, an improved impulsive lag synchronization scheme for different chaotic systems with parametric uncertainties is proposed. Based on the new definition of synchronization with error bound and a novel impulsive control scheme (the so-called dual-stage impulsive control), some new and less conservative sufficient conditions are established to guarantee that the error dynamics can converge to a predetermined level, which is more reasonable and rigorous than the existing results. In particular, some simpler and more convenient conditions are derived by taking the same impulsive distances and control gains. Finally, some numerical simulations for the Lorenz system and the Chen system are given to demonstrate the effectiveness and feasibility of the proposed method.