您的位置: 专家智库 > >

国家自然科学基金(s60736010)

作品数:1 被引量:0H指数:0
发文基金:国家自然科学基金更多>>
相关领域:天文地球更多>>

文献类型

  • 1篇中文期刊文章

领域

  • 1篇天文地球

主题

  • 1篇REMOTE...
  • 1篇SUPPOR...
  • 1篇USING
  • 1篇CLUSTE...
  • 1篇COMBIN...
  • 1篇AN

传媒

  • 1篇Chines...

年份

  • 1篇2011
1 条 记 录,以下是 1-1
排序方式:
Combining clustering and classification for remote-sensing images using unlabeled data
2011年
A joint clustering and classification approach is proposed. This approach exploits unlabeled data for efficient clustering, which is applied in the classification with support vector machine (SVM) in the case of small-size training samples. The proposed method requires no prior information on data labels, and yields better cluster structures, Through cluster assumption and the notions of support vectors, the most confident k cluster centers and data points near the cluster boundaries are labeled and used to train a reliable SVM classifier. Our method gains better estimation of data distributions and mitigates the unrepresentative problem of small-size training samples. The data set collected from Landsat Thematic Mapper (Landsat TM-5) validates the effectiveness of the proposed approach.
边小勇张天序张晓龙
共1页<1>
聚类工具0