A poly(dimethylsiloxane)(PDMS)/glass hybrid microchip for on-line solid phase extraction (SPE) and electrophoresis separation has been developed and evaluated. The SPE microchannel was crossed to the electrophoresis microchannel. All the microfluidic channels were etched on the glass substrate. The magnetic microspheres were coated with hydroxyl-terminated poly-dimethylsiloxane (PDMS-OH) serving as extraction phase,which could be conveniently immobilized into the sample pretreatment channel by magnetic field. The PDMS-OH microspheres were mobilized into and out of the pretreatment channel by injection flow. The 0.1 μmol/L solution of fluorescence isothiocyanate (FITC)-labeled phenylalanine (Phe) was electrically injected into the SPE channel and extracted onto the PDMS-OH microspheres bed. The enriched FITC-labeled Phe was electrically eluted by 9 mmol/L sodium acetate containing 10% acetonitrile and electrically driven into the electrophoresis channel and then separated. The preconcentration factor could reach 87.5 after sufficient extraction. A linear preconcentration curve was obtained with the initial FITC-labeled Phe concentration ranging from 6 nmol/L to 300 nmol/L (R2=0.9922) with 200 s loading time. The detection limit (S/N=3) for the FITC-labeled Phe was 3 nmol/L.
A set of integrated end-column amperometric detection system has been developed,onto which an electrophoresis microchip can be conveniently integrated.Finely machined by a piece of transparent organic glass,the system consists of an electrophoresis microchip platform and an amperometric detection reservoir,in which the microchip can be fixed onto the platform by microchip grooves and with stainless steel fixture.Each detection electrode can be directly fixed in the amperometric detection reservoir by screws and nuts.With dopamine as the model analyte,we take platinum disc electrodes with different diameters of 100 μm,300 μm and 500 μm and a carbon fiber electrode with the diameter of 240 μm as the working electrode,all of which accomplish sensitive detection.The detection parameters of the system are optimized with the carbon fiber electrode.The detection results show that in the electrochemical cleaning procedure,the relative deviations of 3.2% and 0.5% for the peak current and retention time,respectively,can be obtained for the successive detections of 100 μM dopamine,and the limit of detection for dopamine can reach 0.4 μM(S/N = 3).This system is small,but its performance of detection is stable and sensitive,and the replacement of its working electrodes is convenient,so it is very suitable as a universal platform of end-column amperometric detection for electrophoresis microchips.
CHEN ZhiFeng1,GAO YunHua2,WANG Li3,CHU XiaoGang1 1Chinese Academy of Inspection and Quarantine,Beijing 100123,China