We present a coarse-grained molecular dynamics simulation study of phase behavior of amphiphilic monolayers at the liquid crystal (LC)/water interface. The results revealed that LCs at interface can influence the lateral ordering of amphiphiles. Particularly, the amphiphile tails along with perpendicularly penetrated LCs between tails undergo a two-dimension phase transition from liquid-expanded into a liquid-condensed phase as their area density at interface reaches 0.93. While, the liquid-condensed phase of the monolayer never appears at oil/water interface with isotropic shape oil particles. These findings reveal the penetration of anisotropic LC can promote ordered lateral organization of amphiphiles. Moreover, we find the phase transition point is shifted to lower surface coverage of amphiphiles when the LCs have larger affinity to the amphiphile tails.
Polymers exhibit extended structures at high temperatures or in good solvents and collapsed configurations at low temperatures or in poor solvents. This fundamental property is crucial to the design of materials, and indeed has been extensively studied in recent years. In this paper, the collapse of polyethylene rings on an attractive surface was investigated by using molecular dynamics simulations. It is found that the collapse of ring chains on the attractive surface is of distinct difference from their free counterparts, where the collapse becomes more continuous and a one-stage instead of two-stage collapse can be identified by the specific heat. Some hairpin-like crystal structures are found at low temperatures, which are induced by the adsorption interaction of polymer-surface. For a given chain length, the results were further compared with those of the adsorbed linear chains. Due to the topological constraint of ring chains, the number of hairpin structures is clearly less than that of the linear chains. These numerical simulations may provide some new insights into the folding of ring polymers under adsorption interactions.
In this paper, the phase behavior and interracial properties of symmetric ternary polymeric blends A/B/AB are studied by dissipative particle dynamics (DPD) simulations. By using the structure factor and nematic order parameter, we carefully characterized the diversified phases and phase transitions, and established the phase diagram of such symmetric ternary blends. It can be generally divided into four regions: disordered phase (DIS) region at high temperature, ordered lameUar phase (LAM) region, bicontinuous microemulsion (BμE) channel and phase-separated phase (2P) region at low temperature with the increase of the total volume fractions of homopolymers φn, which shows good accordance with that in previous experimental and theoretical reports. Furthermore, we calculated the elastic constants of 2P and LAM phase, and discussed the transition mechanisms from 2P and LAM to BμE phase, respectively. The results show a direct relevance between the phase transitions and the change of interfacial properties. Finally, we also demonstrate that the B,uE channel becomes narrower in lower temperature caused by the temperature dependence of interfacial properties of ternary blends.
LIU XiaoHanBAI ZhiQiangYANG KeDaSU JiaYeGUO HongXia