Ferromagnetic Fe3O4 nanoparticles were synthesized and then self-assembled into microparticles via a solvothermal method, using FeCI3.6H2O as the iron source, sodium oleate as the surfactant, and ethylene glycol as the reducing agent and solvent. The obtained Fe3O4 microparticles were characterized by X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy and vibrating sample magnetometer (VSM). The size and morphology of the particles were examined using transmis- sion electron microscopy (TEM) and scanning electron microscopy (SEM). The Fe3O4 microparticles of nearly monodisperse diameters, controllable in the range of 120-400 nm, consist of assemblies of Fe3O4 nanoparticles with a diameter of 22 nm. The effects of reaction time, amount of surfactant and NaAc on the products were discussed. Interestingly, by using the pre-synthesized Fe3O4 microparticles as the growth substrates, spherical and smooth-looking Fe3O4 microparticles with average diameter of 1μm were obtained. A plausible formation process was discussed.