An organic silane acrylate resin (PMBK) was synthesized by free-radical solution polymerization using methyl methacrylate, butyl acrylate and (3-methacryloxypropyl)trimethoxysilane as monomers. Aluminum (AI) particles were then encapsulated in inorganic-organic hybrid films that were prepared by hydrolysis and condensation of PMBK and tetraethyl orthosilicate (TEOS) on the surface of AI pigments. Characterization results showed that PMBK and TEOS could simultaneously hydrolyze ancl condense with hydroxyl groups on the surface of the A1 particles to form composite AI particles coated with inorganic-organic hybrid films. Compared with raw AI particles, the corrosion resistance and adhesive properties of paint films containing the composite AI particles were improved greatly, while the glossiness of the paint films decreased slightly, from 48.6° to 47.0°. In alkaline media (pH 11 ), the volume of evolved H2 of composite AI particles was only 3.5 mL, whereas that of raw AI was 83.5 mL. The glossiness of paint films containing composite A1 particles decreased by 1.66% after immersion in alkaline media for 24h, whereas that of raw AI decreased by 14.82%. Peel-off tests of the paint films showed that the composite particles moved slightly away from the paint films. In contrast, the raw A1 particles were seriously desquamated, suggesting encapsulation of hybrid films can greatly improve the adhesive properties of A1 particles in paint films.