In this study, a new filter algorithm is presented for solving the nonlinear semidefinite programming. This algorithm is inspired by the classical sequential quadratic programming method. Unlike the traditional filter methods, the sufficient descent is ensured by changing the step size instead of the trust region radius. Under some suitable conditions, the global convergence is obtained. In the end, some numerical experiments are given to show that the algorithm is effective.
In this paper, an improved feasible QP-free method is proposed to solve nonlinear inequality constrained optimization problems. Here, a new modified method is presented to obtain the revised feasible descent direction. In view of the computational cost, the most attractive feature of the new algorithm is that only one system of linear equations is required to obtain the revised feasible descent direction. Thereby, per single iteration, it is only necessary to solve three systems of linear equations with the same coefficient matrix. In particular, without the positive definiteness assumption on the Hessian estimate, the proposed algorithm is still global convergence. Under some suitable conditions, the superlinear convergence rate is obtained.