We propose a theoretical scheme to generate a broadband supercontinuum using a modulated chirped polarization gating technique. By this technique, a broadband continuum of 155 eV can be obtained at microscopic level. The modulations on the supercontinuum can be eliminated after propagation. Then a smooth broadband supercontinuum with the bandwidth of 155 eV can be generated. As a result, isolated sub-100-attosecond pulses with tunable central wavelengths could be obtained straightforwardly. Our simulations also reveal that an isolated attosecond pulse can still be generated by using multicycle driving laser pulses, and the central wave- length of isolated attosecond pulse can be controlled by adjusting the delay rj (ra is the delay of the two counter-rotating circularly polarized pulses.).
We theoretically investigate the contribution of the excited state to the ellipticity of the harmonics from H+ at different orientation angles irradiated by a linearly polarized laser pulse. It is found that the first excited state has a significant influence to the ellipticity of the harmonics, and the contribution of higher excited states to the ellipticity can be neglected. Moreover, the conclusion is not dependent on the laser intensity.
We present a method to generate broadband isolated attosecond pulses. Using a two-color laser field, which is synthesized by a mid-infrared (12.5 fs, 2000 nm) and a weaker (12 fs, 800 nm) pulse in the x direction, a modulated supercontinuum from 290 to 430 eV is obtainable. By properly adding a second-harmonic control field of the driving pulse in the y direction, the short quantum path is well selected and a smooth supercontinuum from 290 to 440 eV is generated. The bandwidth of the supercontinuum can be controlled by adjusting the electric field of the control pulse in the x direction. When the electric field increases to 0.051 a.u., a smooth supercontinuum from 295 to 520 eV is obtained. Using this method we expect that isolated 63-as attosecond pulses with tunable central wavelengths are straightforwardly obtained.We present a method to generate broadband isolated attosecond pulses. Using a two-color laser field, which is synthesized by a mid-infrared (12.5 fs, 2000 nm) and a weaker (12 fs, 800 nm) pulse in the x direction, a modulated supercontinuum from 290 to 430 eV is obtainable. By properly adding a second-harmonic control field of the driving pulse in the y direction, the short quantum path is well selected and a smooth supercontinuum from 290 to 440 eV is generated. The bandwidth of the supercontinuum can be controlled by adjusting the electric field of the control pulse in the x direction. When the electric field increases to 0.051 a.u., a smooth supercontinuum from 295 to 520 eV is obtained. Using this method we expect that isolated 63-as attosecond pulses with tunable central wavelengths are straightforwardly obtained.
We propose a method to generate a high-efficiency broadband water window supercontinuum with a w + 3w/2 multicycle two-colour pulse. Our results reveal that the 3w/2 laser pulse can simultaneously modulate the acceleration step and the ionization step, which not only broadens the bandwidth but also enhances the yield of the generated supercontinuum. An ultra-broadband supercontinuum from 290 eV to 555 eV covering the whole water window is generated. Using this method, we expect that an isolated 62-as pulse with a minor pre-pulse can be directly obtained.
We have investigated high-order harmonic generation from asymmetric molecules. It is found that supercontinuous high harmonics, which are produced from asymmetric molecules by significantly steering the ionization, are broken down when the electric field of the 5-fs driving laser pulse is increased to 0.16 a.u. The high harmonic generation from asymmetric molecules with the presence of a terahertz field is also investigated. This reveals that the terahertz controlled laser pulse significantly increases the energy difference between photons, emitted from the ejected electrons, in the first and second halves of the optical cycle at the centre of the driving laser pulse. In this way, a 200-eV broadband supercontinuum can be produced in the plateau, from which a 60-as pulse with a bandwidth of 60 eV can be directly obtained with a minor post-pulse.