您的位置: 专家智库 > >

国家自然科学基金(61072147)

作品数:20 被引量:39H指数:3
相关作者:夏铁成陶司兴魏含玉王雷朝鲁更多>>
相关机构:上海大学商丘师范学院周口师范学院更多>>
发文基金:国家自然科学基金上海市教育委员会重点学科基金上海市自然科学基金更多>>
相关领域:理学动力工程及工程热物理更多>>

文献类型

  • 20篇中文期刊文章

领域

  • 20篇理学
  • 1篇动力工程及工...

主题

  • 4篇HAMILT...
  • 4篇INTEGR...
  • 3篇英文
  • 3篇EQUATI...
  • 2篇代数
  • 2篇等式
  • 2篇守恒
  • 2篇守恒律
  • 2篇可积
  • 2篇恒等
  • 2篇恒等式
  • 2篇非线性
  • 2篇SELF-C...
  • 2篇SYMMET...
  • 2篇BI
  • 2篇BROER-...
  • 2篇GENERA...
  • 2篇ITS
  • 2篇KUPERS...
  • 2篇HIERAR...

机构

  • 7篇上海大学
  • 2篇周口师范学院
  • 2篇商丘师范学院
  • 1篇内蒙古工业大...
  • 1篇泰山医学院
  • 1篇上海海事大学

作者

  • 6篇夏铁成
  • 2篇陶司兴
  • 2篇魏含玉
  • 1篇银山
  • 1篇岳超
  • 1篇顾佳磊
  • 1篇朝鲁
  • 1篇王雷
  • 1篇杨建生

传媒

  • 4篇Chines...
  • 3篇应用数学与计...
  • 2篇数学年刊(A...
  • 2篇Chines...
  • 2篇Chines...
  • 1篇系统科学与数...
  • 1篇河南大学学报...
  • 1篇数学物理学报...
  • 1篇Acta M...
  • 1篇Annals...
  • 1篇Scienc...
  • 1篇Advanc...

年份

  • 2篇2018
  • 3篇2016
  • 1篇2014
  • 5篇2013
  • 7篇2012
  • 2篇2011
20 条 记 录,以下是 1-10
排序方式:
A new generalized fractional Dirac soliton hierarchy and its fractional Hamiltonian structure被引量:1
2012年
Based on the differential forms and exterior derivatives of fractional orders, Wu first presented the generalized Tu formula to construct the generalized Hamiltonian structure of the fractional soliton equation. We apply the generalized Tu formula to calculate the fractional Dirac soliton equation hierarchy and its Hamiltonian structure. The method can be generalized to the other fractional soliton hierarchy.
魏含玉夏铁成
分块正定矩阵极大极小特征值的界(英文)
2018年
Kolotilina在研究分块Hermitian矩阵的特征值时(Kolotilina L Y. Bounds for eigenvalues of symmetric block Jacobi scaled matrices. J Math Sci, 1996, 79:1043-1047),得到了有关特征值极大值与极小值的某些界.本文进一步研究这个界,得到了更优的结果.
葛玉燕杨建生
关键词:正定矩阵
Non-Semisimple Lie Algebras of Block Matrices and Applications to Bi-Integrable Couplings
2013年
We propose a class of non-semisimple matrix loop algebras consisting of 3×3 block matrices,and form zero curvature equations from the presented loop algebras to generate bi-integrable couplings.Applications are made for the AKNS soliton hierarchy and Hamiltonian structures of the resulting integrable couplings are constructed by using the associated variational identities.
Jinghan MengWen-Xiu Ma
关键词:SYMMETRY
超Broer-Kaup-Kupershmidt族的双非线性化被引量:3
2012年
得出了超Broer-Kaup-Kupershmidt族Lax对的对称约束及其双非线性化.在得到的对称约束下,把超Broer-Kaup-Kupershmidt族的n阶流分解成定义在对应于动力变量x和t_n的超对称流形上的两种超有限维可积Hamilton系统.此外,显式给出了Liouville可积性所需的运动积分.
陶司兴夏铁成
Determinant Solutions to a (3+1)-Dimensional Generalized KP Equation with Variable Coefficients被引量:1
2012年
1 Introduction Although partial differential equations that govern the motion of solitons are nonlinear, many of them can be put into the bilinear form. Hirota, in 1971, developed an ingenious method to obtain exact solutions to nonlinear partial differential equations in the soliton theory, such as the KdV equation, the Boussinesq equation and the KP equation (see [1-2]).
Alrazi ABDELJABBARAhmet YILDIRIM
A refined invariant subspace method and applications to evolution equations被引量:21
2012年
The invariant subspace method is refined to present more unity and more diversity of exact solutions to evolution equations. The key idea is to take subspaces of solutions to linear ordinary differential equations as invariant subspaces that evolution equations admit. A two-component nonlinear system of dissipative equations is analyzed to shed light oi1 the resulting theory, and two concrete examples are given to find invariant subspaces associated with 2nd-order and 3rd-order linear ordinary differentii equations and their corresponding exact solutions with generalized separated variables.
MA Wen-Xiu
Loop Algebras and Bi-integrable Couplings被引量:4
2012年
A class of non-semisimple matrix loop algebras consisting of triangular block matrices is introduced and used to generate bi-integrable couplings of soliton equations from zero curvature equations.The variational identities under non-degenerate,symmetric and ad-invariant bilinear forms are used to furnish Hamiltonian structures of the resulting bi-integrable couplings.A special case of the suggested loop algebras yields nonlinear bi-integrable Hamiltonian couplings for the AKNS soliton hierarchy.
Wenxiu MA
关键词:SYMMETRY
超Broer-Kaup-Kupershmidt族的非线性可积耦合及其哈密尔顿结构
2013年
基于一类新的Lie超代数,给出了超Broer-Kaup-Kupershmidt族的非线性可积耦合,它能约化成经典的Broer-Kaup-Kupershmidt族的非线性可积耦合.利用相应Loop超代数上的超迹恒等式,得到了超Broer-Kaup-Kupershmidt族的非线性可积偶的超哈密尔顿结构.这种方法还可以推广到其它的超孤子族.
魏含玉夏铁成岳超
关键词:LIE超代数
A new six-component super soliton hierarchy and its self-consistent sources and conservation laws被引量:1
2016年
A new six-component super soliton hierarchy is obtained based on matrix Lie super algebras. Super trace identity is used to furnish the super Hamiltonian structures for the resulting nonlinear super integrable hierarchy. After that, the self- consistent sources of the new six-component super soliton hierarchy are presented. Furthermore, we establish the infinitely many conservation laws for the integrable super soliton hierarchy.
魏含玉夏铁成
两类超Tu族的自相容源和守恒律
2013年
基于两类不同的Lie超代数和超迹恒等式,建立了两类超可积Tu族的自相容源方程.另外,还建立了两类超可积Tu族的无穷守恒律.特别地,费米变量在超可积系统里面起了重要作用,它不同于一般的可积系统.
魏含玉夏铁成
关键词:守恒律
共2页<12>
聚类工具0