陕西省科学技术研究发展计划项目(2012K06-36) 作品数:11 被引量:88 H指数:6 相关作者: 范虹 张翡 朱艳春 张旭梅 王芳梅 更多>> 相关机构: 陕西师范大学 中国科学院 连云港出入境检验检疫局 更多>> 发文基金: 陕西省科学技术研究发展计划项目 中央高校基本科研业务费专项资金 国家自然科学基金 更多>> 相关领域: 自动化与计算机技术 电子电信 更多>>
基于模糊C均值聚类的医学图像分割研究 被引量:38 2014年 模糊C均值聚类算法(FCM)在硬C均值聚类的基础上有效地解决了医学图像分割中存在的模糊情况,通过建立表示图像中像素点与聚类中心加权相似度的目标函数,采用迭代优化的方法求解目标函数的极小值来确定最佳聚类。针对FCM算法中存在的对大样本数据分割速度慢、结果易受初始值影响、对噪声敏感、难以适应多种数据分布等缺陷,涌现出了大量的改进算法。对其中的部分改进算法进行综述,主要介绍快速FCM算法、基于初始值选取的FCM算法、基于空间邻域信息的FCM算法以及基于核函数的FCM算法等,并对其优缺点进行概要的总结和介绍。指出该算法进一步的研究方向。 张翡 范虹关键词:模糊C均值聚类 医学图像分割 核函数 空间信息 多分辨率水平集算法的乳腺MR图像分割 被引量:5 2014年 针对乳腺MR图像信息量大、灰度不均匀、边界模糊、难分割的特点,提出一种多分辨率水平集乳腺MR图像分割算法.算法的核心是首先利用小波多尺度分解对图像进行多尺度空间分析,得到粗尺度图像;然后对粗尺度图像利用改进CV模型进行分割.为了去除乳腺MR图像中灰度偏移场对分割效果的影响,算法中引入局部拟合项,并用核函数进一步改进CV模型,进而对粗尺度分割效果进行优化处理.仿真和临床数据分割结果表明,所提算法分割灰度不均匀图像具有较高的分割精度和鲁棒性,能够有效的实现乳腺MR图像的分割. 范虹 朱艳春 王芳梅 张旭梅关键词:灰度不均匀 基于二维集合经验模式分解的距离正则化水平集磁共振图像分割 被引量:1 2016年 针对现有磁共振(MR)图像分割算法大多直接在原图像上进行处理,分割效果受噪声影响较大的问题,本文引入二维集合经验模式分解(BEEMD)算法,提高距离正则化水平集(DRLSE)方法对MR图像的分割精度.算法中首先使用BEEMD将待分割MR图像分解为多个二维固有模式函数(BIMF),通过对各BIMF赋予不同加权系数重构待分割图像,从而增强分割目标;然后在DRLSE的边界指示函数中添加部分BIMF分量,恢复因高斯平滑被模糊的目标轮廓,并使用DRLSE方法对重构图像进行分割.通过对仿真图像和临床MR图像分割验证,表明本文算法具有较高的分割精度和鲁棒性,能有效实现对临床MR图像的分割. 范虹 韦文瑾 朱艳春关键词:磁共振图像 面向海量数据场景的空间属性数据集成框架 2018年 空间数据集成分为空间属性数据集成,特别注意的是时空数据集成存储以及多源空间数据集成两个方面。对于空间属性数据集成方面,面向少数据量多分析性开发场景,Arc SDE是目前最佳的解决方案;但是针对海量性等开发场景,方案甚少,文中基于Sequoia DB与Mongo DB分布式数据库协同探索了该情况下的海量空间属性集成策略以及步骤框架,尤其是针对时空数据。 徐强 范虹关键词:ARCSDE FME 时空数据 经验模式分解回顾与展望 被引量:8 2014年 经验模式分解EMD打破了Fourier变换、小波分解等传统数据分析方法需要预先设定基函数的局限,是一种完全由数据驱动的自适应非线性非平稳时变信号分解方法,可以将数据从高频到低频分解成具有物理意义的少数几个固有模态函数分量和一个余量。首先介绍了原始EMD方法的原理和算法;接着,总结归纳了EMD当前的研究现状,分析了EMD存在的端点效应、模态混叠、运行速度问题及其在二维情况下的问题并对国内外学者解决这些问题的方法进行了概述和比较;最后结合EMD研究存在的难题指出了EMD进一步研究与应用的发展方向。 毛玉龙 范虹关键词:经验模式分解 乳腺MR图像的有效分割 2013年 乳腺核磁共振影像(MR)的有效分割一直是医学影像分析领域的研究热点。针对目前人工解读图像信息的不足,提出一种自动化分割乳腺MR图像的方法,该方法结合传统FCM算法和最小距离分类器实现了感兴趣区域中不同位置、灰度值相似的样本点按距离分类。算法首先根据图像的灰度信息利用FCM算法实现聚类,其次自动提取感兴趣区域的聚类信息,并利用最小距离分类器对其按距离分类。实验结果表明,该算法对乳腺核磁共振影像的分割具有较高的准确性,提高了其组织划分的精度,且自动化程度比较高,为后续进行肿瘤区域的自动提取与识别奠定基础。 郝艳荣 范虹 张翡关键词:图像分割 FCM 最小距离分类器 利用改进CV模型连续水平集算法的核磁共振乳腺图像分割 被引量:8 2014年 针对核磁共振乳腺图像边界弱、信息量大、信噪比低的问题,提出一种基于改进Chan-Vese(CV)模型的连续水平集分割算法。该算法利用B样条基函数将传统离散水平集函数表示成连续形式,用解决B样条空间的变分问题代替水平集函数更新的计算问题;通过引入转移Heaviside函数,构造α-CV模型作为能量函数模型。实验结果表明,与传统CV模型离散水平集方法相比,该算法可以避免局部极小值的现象,提高分割精度,有效抑制噪声,分割迭代次数降低了101数量级,并且可以准确、稳定地实现低信噪比、弱边界的核磁共振乳腺图像分割。 王芳梅 范虹 Yi WANG关键词:核磁共振 融合全局和局部信息的水平集乳腺MR图像分割 被引量:8 2015年 针对乳腺核磁共振成像的灰度不均匀现象,提出一种融合全局和局部信息的水平集图像分割方法(global and local combined C_V,GLCCV)。该方法将图像的局部信息融入基于全局信息的Chan-Vese(C_V)水平集方法;根据局部灰度拟合均值占全局灰度均值的比例,构造自适应平衡指示函数调节全局和局部效应之间的均衡;加入惩罚项以避免重新初始化。对比实验表明,该水平集分割模型能够有效分割多种灰度不均匀场景下的乳腺MR图像,在抗噪和精确性方面优于融合前的分割方法。 张旭梅 范虹 乔柱关键词:乳腺MRI 水平集 灰度不均匀 烟花算法优化的软子空间MR图像聚类算法 被引量:12 2017年 现有的软子空间聚类算法在分割MR图像时易受随机噪声的影响,而且算法因依赖于初始聚类中心的选择而容易陷入局部最优,导致分割效果不理想.针对这一问题,提出一种基于烟花算法的软子空间MR图像聚类算法.算法首先设计一个结合界约束与噪声聚类的目标函数,弥补现有算法对噪声数据敏感的缺陷,并提出一种隶属度计算方法,快速、准确地寻找簇类所在子空间;然后,在聚类过程中引入自适应烟花算法,有效地平衡局部与全局搜索,弥补现有算法容易陷入局部最优的不足.EWKM,FWKM,FSC,LAC算法在UCI数据集、人工合成图像、Berkeley图像数据集以及临床乳腺MR图像、脑部MR图像上的聚类结果表明,所提出的算法不仅在UCI数据集上能够取得较好的结果,而且对图像聚类也具有较好的抗噪性能,尤其是对MR图像的聚类具有较高的精度和鲁棒性,能够较为有效地实现MR图像的分割. 范虹 侯存存 朱艳春 姚若侠关键词:MR图像 图像分割 结合非局部均值的快速FCM算法分割MR图像研究 被引量:8 2014年 针对FCM算法分割医学MR图像存在的运算速度慢、对初始值敏感以及难以处理MR图像中固有Rician噪声等缺陷,提出了一种结合非局部均值的快速FCM算法。该算法的核心是首先针对MR图像中存在的Rician噪声,利用非局部均值算法对图像进行去噪处理,消除噪声对分割结果的影响;然后根据所提出的新的自动获取聚类中心的规则得到初始聚类中心;最后将得到的聚类中心作为快速FCM算法的初始聚类中心用于去噪后的图像分割,解决了随机选择初始聚类中心造成的搜索速度慢和容易陷入局部极值的问题。实验表明,该算法能够快速有效地分割图像,并且具有较好的抗噪能力。 张翡 范虹 郝艳荣关键词:MR图像分割 非局部均值