Let Go and G1 be two graphs with the same vertices. The new graph G(G0, G1; M) is a graph with the vertex set V(0o) ∪)V(G1) and the edge set E(Go) UE(G1) UM, where M is an arbitrary perfect matching between the vertices of Go and G1, i.e., a set of cross edges with one endvertex in Go and the other endvertex in G1. In this paper, we will show that if Go and G1 are f-fault q-panconnected, then for any f 〉 2, G(G0, G1; M) is (f + 1)-fault (q + 2)-panconnected.