您的位置: 专家智库 > >

国家自然科学基金(10571140)

作品数:3 被引量:2H指数:1
发文基金:国家自然科学基金更多>>
相关领域:理学自动化与计算机技术更多>>

文献类型

  • 3篇中文期刊文章

领域

  • 3篇理学
  • 1篇自动化与计算...

主题

  • 2篇AUTOMO...
  • 2篇BI
  • 2篇LIPSCH...
  • 2篇FRACTA...
  • 1篇QUASI
  • 1篇SHARP
  • 1篇UL
  • 1篇AUTOMO...
  • 1篇GAP
  • 1篇IFS
  • 1篇LI
  • 1篇-B
  • 1篇MULTIF...

传媒

  • 1篇Acta M...
  • 1篇Chines...
  • 1篇Scienc...

年份

  • 2篇2010
  • 1篇2009
3 条 记 录,以下是 1-3
排序方式:
IFS ON BOUNDARIES OF HOMOGENEOUS TREES:WQB CONDITION AND MULTIFRACTAL ANALYSIS被引量:1
2010年
We study, from the point of view of the multifractal analysis, iterated function systems on totally disconnected spaces, namely, the boundaries of homogeneous trees. In particular, we study in this setting the "weak quasi-Bernoulli property introduced by Testud [3, 4]. After projection on R or R2, we get new examples of self-similar measures which being WQB, obey the multifractal formalism for positive q,s.
刘浩文志雄
关键词:IFSMULTIFRACTAL
Gap Property of Bi-Lipschitz Constants of Bi-Lipschitz Automorphisms on Self-similar Sets
2010年
For a given self-similar set ERd satisfying the strong separation condition,let Aut(E) be the set of all bi-Lipschitz automorphisms on E.The authors prove that {fAut(E):blip(f)=1} is a finite group,and the gap property of bi-Lipschitz constants holds,i.e.,inf{blip(f)=1:f∈Aut(E)}>1,where lip(g)=sup x,y∈E x≠y(|g(x)-g(y)|)/|x-y| and blip(g)=max(lip(g),lip(g-1)).
Lifeng XIYing XIONG
关键词:FRACTAL
Sharp Lipschitz constant of bi-Lipschitz automorphism on Cantor set被引量:1
2009年
Suppose C r = (r C r ) ∪ (r C r + 1 ? r) is a self-similar set with r ∈ (0, 1/2), and Aut(C r ) is the set of all bi-Lipschitz automorphisms on C r . This paper proves that there exists f* ∈ Aut(C r ) such that $$ blip(f*) = inf\{ blip(f) > 1:f \in Aut(C_r )\} = min\left[ {\frac{1} {r},\frac{{1 - 2r^3 - r^4 }} {{(1 - 2r)(1 + r + r^2 )}}} \right], $$ where $ lip(g) = sup_{x,y \in C_r ,x \ne y} \frac{{\left| {g(x) - g(y)} \right|}} {{\left| {x - y} \right|}} $ and blip(g) = max(lip(g), lip(g ?1)).
XIONG YingWANG LiShaXI LiFeng
关键词:FRACTAL
共1页<1>
聚类工具0