5-Aminolevulinic acid (ALA), a major photosensitivity insecticide, has attracted increasing attention as a new type of highly efficient, environmental friendly pesticide to be used to control the pest. To examine whether or not ALA acts effectively to grasshopper, Oxya chinensis and elucidate the detoxification mechanism of ALA, the susceptibility to ALA was assessed in O. chinensis and two major metabolic detoxification enzymes including glutathione S-transferases (GSTs) and general esterases (ESTs)-specific activities were compared in different development stages and different body sections of O. chinensis treated by ALA and the control. The results showed that the ALA exhibited obvious toxicity to the grasshopper in different development stages. In the low-dose treatment (0.0597 mmol L-1), the mortalities of O. chinensis reached a significant level (55.5% in the 1st instar nymphs, 61.4% in the 2nd instar nymphs, 71.4% in the 3rd instar nymphs, and 64.4% in the 4th instar nymphs. But, there was no dose-dependent toxic effect. Thereby, we proposed that ALA has the potential for acting as photosensitivity insecticide for controlling O. chinensis. GSTs activity assays using CDNB and DCNB as substrates indicated that the thorax and abdomen of the different instar nymphs treated by ALA showed 1.52-5.56 fold significantly increased GSTs activities compared with the control. However, for the ESTs-specific activity assay, there was no significant difference between O. chinensis treated by ALA and the control within different instar nymphs, when a-NA, a-NB and b-NA were used as substrates. Therefore, GSTs-mediated metabolic detoxification as evidenced by significantly increased GSTs activities might contribute to protect against oxidative damage and oxidative stress by ALA in O. chinensis.
YANG Mei-lingYIN KunGUO Ya-pingMA En-boZHANG Jian-zhen
A cDNA encoding a sigma-class glutathione S-transferase of the locust, Locusta migratoria manilensis (LmGSTs1), was cloned by reverse transcriptase-polymerase chain reaction. The 830 bp-long cDNA encoded a 615 bp open reading frame (204 amino acid polypeptide), which exhibited the structural motif and domain organization characteristic of GST sigma-class. It revealed 59, 57, 57, and 56% identities to sigma-class GSTs from Blattella germanica, Gryllotalpa orientalis, Nasonia vitripennis, and Pediculus humanus corporis, respectively. A recombinant protein (LmGSTs1) was functionally expressed in Escherichia coli cells in a soluble form and purified to homogeneity. LmGSTs1 was able to catalyze the biotranslation of glutathione with 1-chloro-2,4-dinitrobenzene, a model substrate for GSTs, as well as with p-nitro-benzyl chloride. Its optimal activity was observed at pH 8.0 and at 30℃. Incubation for 30 min at temperatures below 50℃ scarcely affected the activity. The I50 of reactive blue (RB) was 18.5 μmol L-1. In the presence of 0.05 mmol L-1 ethacrynic acid (ECA), LmGSTs1 showed (81±3)% of the original activities.
东亚飞蝗Locusta migratoria manilensis(Meyen)是我国主要的农业害虫之一,已发现东亚飞蝗对某些农药产生了抗性,其抗性机制可能与谷胱甘肽硫转移酶(GST)代谢解毒相关。本研究利用特异性引物合成东亚飞蝗GST4个不同家族基因的双链RNA(dsRNA),将dsRNA注射到东亚飞蝗幼虫体内,采用Real time RT-PCR技术测定了干扰不同时间后目的基因mRNA的表达水平。结果表明,4个不同家族GST的沉默效应具有时间差异。来自delta家族的LmGSTd1和sigma家族的LmGSTs5基因在注射dsRNA后12h时mRNA量就已显著下降;而来自theta家族的LmGSTt1和unknown家族的LmGSTu1基因在注射24h后mRNA水平才呈现显著下降。本研究对后续东亚飞蝗GST功能及抗性机制研究提供了基础资料和依据,同时对其它昆虫RNA干扰研究具有一定的借鉴作用。