With hot rolling in laboratory and Gleeble thermal simulator, the hot working of a high nitrogen austenitic stainless steel (HNASS) was researched. The results showed that dynamic recovery (DRV) and dynamic recrystalli- zation (DRX) in HNASS occurred during hot working, and both of them had well-defined stress peaks in flow curves under different conditions. During hot rolling experiment at temperature from 950 to 1 050 ℃, recrystallization phe- nomenon does not take place in test material until the deformation ratio is up to 40%. Recrystallization influences remarkably the strength and ductility of material, and the test HNASS possesses better combination of strength with ductility. According to the curve of θ--α (strain hardening rate-steady state stress), the DRX critical strain of test material was determined. Also, the activation energy of hot working was calculated to be 746.5 kJ/mol and the equation of hot working was obtained.
LANG Yu-pingZHOU YongRONG FanCHEN Hai-taoWENG Yu-qingSU Jie
The precipitation behavior of M2N and the microstructural evolution in a Cr-Mn austenitic stainless steel with a high nitrogen content of 0.43mass% during isothermal aging has been investigated using optical microscopy ( OM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The aging treatments have led to the decomposition of nitrogen supersaturated austenitic matrix through discontinuous cellular precipitation. The precipitated cells comprise alternate lamellae of M2N precipitate and austenitic matrix. This kind of precipitate morphology is similar to that of pearlite. However, owing to the non-eutectoidic mechanism of the reaction, the growth characteristic of the cellular precipitates is different from that of pearlite in Fe-C binary alloys. M2N precipitate in the cell possesses a hexagonal crystal structure with the parameters a = 0.4752nm and c = 0.4429nm, and the orientation relationship between the M2V precipitates and austenite determined from the SADP is [01^-10]M2N//[101]γ, [2^-1^-10]M2N//[010]γ.
The interaction between precipitation and recrystallization in cold deformed Fe-18Cr-12Mn-0.48N high-nitrogen austenitic stainless steel was investigated by means of hardness test, optical microscopy (OM) and transmission electron microscopy (TEM). The results show that the recrystallization of the steel begins at about 750℃ . When aging at 750℃ , the precipitation occurs prior to recrystallization. Large numbers of the second phases nucleate in dislocation, grain boundary and subgrain boundary. Precipitation of the second-phase particles hinders the formation of recrystallization nucleus.