The tectono-stratigraphic sequences of the Kuqa foreland fold-thrust belt in the northern Tarim basin, northwest China, can be divided into the Mesozoic sub-salt sequence, the Paleocene-Eocene salt sequence and the Oligocene-Quaternary supra-salt sequence. The salt sequence is composed mainly of light grey halite, gypsum, marl and brown elastics. A variety of salt-related structures have developed in the Kuqa foreland fold belt, in which the most fascinating structures are salt nappe complex. Based on field observation, seismic interpretation and drilling data, a large-scale salt nappe complex has been identified. It trends approximately east-west for over 200 km and occurs along the west Qiulitag Mountains. Its thrusting displacement is over 30 km. The salt nappe complex appears as an arcuate zone projecting southwestwards along the leading edge of the Kuqa foreland fold belt. The major thrust fault is developed along the Paleocene-Eocene salt beds. The allochthonous nappes comprise large north-dipping faulting monoclines which are made up of Paleocene-Pliocene sediments. Geological analysis and cross-section restoration revealed that the salt nappes were mainly formed at the late Himalayan stage (c.a. 1.64 Ma BP) and have been active until the present day. Because of inhomogeneous thrusting, a great difference may exist in thrust displacement, thrust occurrence, superimposition of allochthonous and autochthonous sequences and the development of the salt-related structures, which indicates the segmentation along the salt nappes. Regional compression, gravitational gliding and spreading controlled the formation and evolution of the salt nappe complex in the Kuqa foreland fold belt.
Field investigation and seismic section explanation showed that the Longmen Mountain Thrust Belt has obvious differential deformation: zonation, segmentation and stratification. Zonation means that, from NW to NE, the Longmen Mountain Thrust Belt can be divided into the Songpan- Garz~ Tectonic Belt, ductile deformation belt, base involved thrust belt, frontal fold-thrust belt, and foreland depression. Segmentation means that it can be divided into five segments from north to south: the northern segment, the Anxian Transfer Zone, the center segment, the Guanxian Transfer Zone and the southern segment. Stratification means that the detachment layers partition the structural styles in profile. The detachment layers in the Longmen Mountain Thrust Belt can be classified into three categories: the deep-level detachment layers, including the crust-mantle system detachment layer, intracrustal detachment layer, and Presinian system basal detachment layer; the middle-level detachment layers, including Cambrian-Ordovician detachment layer, Silurian detachment layer, etc.; and shallow-level detachment layers, including Upper Triassic Xujiahe Formation detachment layer and the Jurassic detachment layers. The multi-level detachment layers have a very important effect on the shaping and evolution of Longmen Mountain Thrust Belt.
As is well known that many decollement layers were developed in the Longmenshan thrust belt,Si-chuan Basin,China. Through field investigation,explanation of seismic profiles and analysis of the balanced sections,we can divide the decollement zones into 3 categories: (1) the deep level decolle-ment zones,including the crust-mantle decollement layer,intracrustal decollement layer,and presinian basal decollement layer. The main structural styles of their deformation are the crust-mantle decoup-ling detachment deformation,the basal ductile shear deformation,etc.; (2) the middle level decollement zones,including the Cambrian-Ordovician decollement layer,the Silurian decollement layer,etc.,the main structural styles of their deformation are the isopachous fold,the angular fold,the saddle struc-ture,and the combination styles of them; and (3) the shallow level decollement zones,including the Xujiahe Formation decollement layer of Upper Triassic and the Jurassic decollement layers,the main structural styles of their deformation are the thrust-nappe tectonic,the pop-up,the triangle zone ,the duplex,etc. Multi-level decollement zones not only made the Longmenshan thrust belt develop many different deformation styles from deep place to shallow place,but also made some local areas have the superimposition of the tectonic deformation apparently. This study indicates that the multi-level de-collement zones have a very important effect on the shaping and evolution of the Longmenshan thrust belt.
TANG LiangJie1,2,3,YANG KeMing4,JIN WenZheng1,2,3,L ZhiZhou4 & YU YiXin1,2,3 1 State Key Laboratory of Petroleum Resource and Prospecting,China University of Petroleum,Beijing 102249,China
Through field geological investigation and seismic interpretation of the Longmen (龙门) Mountain thrust belt, we summarized the following structural styles: thrust belt, fault-related fold (fault bend fold, fault propagation fold, and fault decollement fold), pop-up, triangle zone, duplex, superimposed fold, ductile deformation structures, reverse thrust fault, klippe, decollement structure,etc.. These structural styles have evident distribution characteristics; they had zonation and segmentation in plane. The zonation presents as the thrust nappe tectonic zone to the west of Tongjichang (通济场) fault, fault-related folds between Tongjichang fault and Guankou (关口) fault, and low and mild folds to the east of Guankou fault. The segmentation is evidenced as the scale of reverse thrust faults was minor between Tongjichang No. 1 fault and Tongjichang No. 2 fault. The distance between these two faults became long in the Daynanbao (大园包) structure, and there developed typical fault propagation fold and pop-up between these two faults. Furthermore, the structures had stratifi-cation in profile. The salt layer of T21 provided good conditions for the formation and development of large listric thrust faults; the thrust fault slipped in the salt layer and formed decollement structures and fault-related fold. At the same time, there formed duplex and reverse thrust faults between the two decollement layers.
The Majiang paleo-reservoir is a typical destroyed hydrocarbon reservoir, buried in carbonate strata of China's southern marine-facies. Field geological explorations, interpretations of seismic profiles and balanced cross-section restorations around this paleo-reservoir reveal that its formation and evolution have been restricted by multiphase tectonic movements of different intensities. A regional tectonic mechanism and model have been suggested for the formation and evolution of the Majiang paleo- reservoir. Geological field exploration has been carried out along three typical Silurian cross-sections and rock samples were tested in combination with water-rock interaction. Based on the result of cap tests, the planar distribution, the residual thickness, the erosion thickness and the preservation conditions, the Silurian mudstone cap is discussed around the Majiang paleo-reservoir. Combining the hydrodynamic conditions of its formation and evolution and its tectonic movements, we determined the fact that the thicker the cap is, the more resistant it is to hydrodynamic destruction. The multi-phase formation and destructive geological model of the paleo-reservoir is established through an overall analysis of multi- phase tectonic evolutions, cap developments, hydrodynamic conditions and solid mineral metallogenic ages measured by Rb-Sr, Pb and Sm-Nd isotope techniques.