Based on the effective medium theory, the triangular ground plane cloak can be realized by thin layered systems. Two solutions of parameter setting of the layered cloak are suggested to demonstrate the invisibility performance of a hybrid incoming wave. The hybrid parameters are derived from the equivalent of both anisotropies of permittivity and permeability to the Mternating layers. The performance of the designed layered cloak is validated by both TM and TE wave simulations with near-field distributions and average scattering power outflows on an observation semicircle. From the simulation results, the layered cloak with both hybrid parameters and improved hybrid parameters can reflect the incoming TM/TE waves in a specular direction, and the latter behaves with a better overall invisibility performance.
We propose the practical realization of a shrinking device by using layered structures of homogeneous isotropic materials.By mimicking the shrinking device with concentric alternating thin layers of isotropic dielectrics,the permittivity and the permeability in each isotropic layer can be properly determined from the effective medium theory in order to achieve the shrinking effect.The device realized by multilayer coating with dielectrics is validated by TE wave simulation,and good shrinking performance is demonstrated with only a few layers of homogeneous isotropic materials.