A finite difference time domain (FDTD) method is used to numerically study the power absorption of broadband terahertz (0.1 - 1.5 THz) electromagnetic waves in a partially ionized uniform plasma layer under low pressure and atmosphere discharge conditions. The power absorption spectra are calculated numerically and the numerical results are in accordance with the analytic results. Meanwhile, the effects on the power absorption are calculated with different applied magnetic fields, collision frequencies and electron number densities, which depend strongly on those parameters. Under the dense strongly magnetized plasma conditions, the absorption gaps appear in the range of 0.3 - 0.36 THz, and are enlarged with the increasing electron number density.
A cylindrical model of linear MHD instabilities in tokamaks is presented. In the model, the cylindrical plasma is surrounded by a vacuum which is divided into inner and outer vacuum areas by a conducting wall. Linearized resistivity MHD equations with plasma viscosity are adopted to describe our model, and the equations are solved numerically as an initial value problem. Some of the results are used as benchmark tests for the code, and then a series of equilibrium current profiles are used to simulate the bootstrap current profiles in actual experiments with a bump on tail. Thus the effects of these kinds of profiles on MHD instabilities in tokamaks are revealed. From the analysis of the numerical results, it is found that more plasma can be confined when the center of the current bump is closer to the plasma surface, and a higher and narrower current bump has a better stabilizing effect on the MHD instabilities.