您的位置: 专家智库 > >

国家自然科学基金(10801123)

作品数:4 被引量:4H指数:1
相关作者:吴耀华金应华更多>>
相关机构:中国科学技术大学更多>>
发文基金:国家自然科学基金更多>>
相关领域:理学农业科学更多>>

文献类型

  • 4篇中文期刊文章

领域

  • 4篇理学
  • 1篇农业科学

主题

  • 2篇ESTIMA...
  • 2篇LINEAR
  • 1篇英文
  • 1篇散度
  • 1篇PARTIA...
  • 1篇PRODUC...
  • 1篇RESTRI...
  • 1篇BAYESI...
  • 1篇CRITER...
  • 1篇ED
  • 1篇EMPIRI...
  • 1篇-B
  • 1篇AS
  • 1篇C-
  • 1篇LOG
  • 1篇BAYES
  • 1篇DIVERG...

机构

  • 1篇中国科学技术...

作者

  • 1篇金应华
  • 1篇吴耀华

传媒

  • 3篇Acta M...
  • 1篇中国科学技术...

年份

  • 2篇2013
  • 1篇2012
  • 1篇2009
4 条 记 录,以下是 1-4
排序方式:
Analysis of φ-divergence for Loglinear Models with Constraints under Product-multinomial Sampling
2013年
The loglinear model under product-multinomial sampling with constraints is considered. The asymptotic expansion and normality of the restricted minimum C-divergence estimator (RMDE) which is a generalization of the maximum likelihood estimator is presented. Then various statistics based on C-divergence and RMCDE are used to test various hypothesis test problems under the model considered. These statistics contain the classical loglikelihood ratio test statistics and Pearson chi-squared test statistics. Ia the last section, a simulation study is implemented.
Ying-hua JINYao-hua Wu
基于φ-散度的乘积多项抽样下对数线性模型的检验水平和功效(英文)被引量:1
2009年
考虑了乘积多项抽样下的对数线性模型.在这个模型下,文献[Jin Y H,Wu Y H.Mini mumφ-divergence esti mator and hierarchical testing in log-linear models under product-multinomial sampling.Journal of Statistical Planning and Inference,2009,139:3 488-3 500]用基于-散度和最小-散度估计构造的统计量研究了几类假设检验问题,这其中就有嵌套假设.最小-散度估计是极大似然估计的推广.在上述文献的基础上,给出了其中一类检验的功效函数的渐近逼近公式;另外,还研究了在一列近邻假设下检验统计量的渐近分布.通过模拟研究发现,与Pearson型统计量和对数极大似然比统计量相比,Cressie-Read型检验统计量有差不多的甚至更好的模拟功效和水平.
金应华吴耀华
The Superiorities of Bayes Linear Unbiased Estimator in Multivariate Linear Models被引量:2
2012年
In this article, the Bayes linear unbiased estimator (BALUE) of parameters is derived for the multivariate linear models. The superiorities of the BALUE over the least square estimator (LSE) is studied in terms of the mean square error matrix (MSEM) criterion and Bayesian Pitman closeness (PC) criterion.
Wei-ping ZHANG Lai-sheng WEI Yu CHEN
Empirical Likelihood-Based Subset Selection for Partially Linear Autoregressive Models被引量:1
2013年
Based on the empirical likelihood method, the subset selection and hypothesis test for parameters in a partially linear autoregressive model are investigated. We show that the empirical log-likelihood ratio at the true parameters converges to the standard chi-square distribution. We then present the definitions of the empirical likelihood-based Bayes information criteria (EBIC) and Akaike information criteria (EAIC). The results show that EBIC is consistent at selecting subset variables while EAIC is not. Simulation studies demonstrate that the proposed empirical likelihood confidence regions have better coverage probabilities than the least square method, while EBIC has a higher chance to select the true model than EAIC.
Yu HANYing-hua JINMin CHEN
共1页<1>
聚类工具0